Abstract:
Optical multi-channel measurement unit for a process measurement includes first ends for receiving optical radiation from the optical radiation source, and second ends for outputting the optical radiation for illuminating the at least one object. Optical detectors receive optical radiation from at least one measurement channel via at least one optical filter and convert an intensity of the optical radiation to an electrical signal. A movement mechanism causes, for filtering the wavelengths of the optical radiation propagating between detectors and the optical measurement channels through the optical filters, at least one of the following: movement inside at least one optical filter and movement between the filters and the detectors.
Abstract:
Contrary to conventional wisdom, which holds that light-emitting diodes (LEDs) should be cooled to increase efficiency, the LEDs disclosed herein are heated to increase efficiency. Heating an LED operating at low forward bias voltage (e.g., V
Abstract:
An intracavity laser absorption infrared spectroscopy system for detecting trace analytes in vapor samples. The system uses a spectrometer in communications with control electronics, wherein the control electronics contain an analyte database that contains absorption profiles for each analyte the system is used to detect. The system can not only detect the presence of specific analytes, but identify them as well. The spectrometer uses a hollow cavity waveguide that creates a continuous loop inside of the device, thus creating a large path length and eliminating the need to mechanically adjust the path length to achieve a high Q-factor. In a preferred embodiment, the laser source may serve as the detector, thus eliminating the need for a separate detector.
Abstract:
The invention relates to an ATR infrared spectrometer (1) for analyzing the chemical composition of a sample, having an elongated ATR crystal (2), an infrared light emitter line (8) arranged on an ATR crystal (2) inlet surface (4) which is arranged at one longitudinal end of the ATR crystal (2), and an infrared light detector line (10) arranged at the other longitudinal end of the ATR crystal (2). Infrared light emitted from the infrared light emitter line (8) directly enters the ATR crystal (2) via the inlet surface (4) and is guided in the ATR crystal (2) to the infrared light detector line (10) while undergoing total internal reflection and interacting with the sample, which is arranged between the infrared light emitter line (8) and the infrared light detector line (10) adjacently to the ATR crystal (2). The total extension (13) of all the infrared light-detecting regions (18) of the infrared light detector line (10) with respect to the direction perpendicular to the longitudinal axis (21) of the ATR crystal corresponds maximally to the width (14) of the ATR crystal (2) and is greater than the total extension (12) of all the infrared light-emitting regions (17) of the infrared light emitter line (8).
Abstract:
A method of contactless detection of indications of psychoactive components in a liquid (6) is disclosed and an apparatus therefor, the method comprising the steps of emitting substantially monochromatic light at least at two different wavelengths (La, Lb) and detecting the reflection in a free surface (12) of said liquid (6) by means of a photo detector (5), analysing an output signal from the photo detector (5) to identify output parts caused by light emitted from the first (3a) and second emitter (3b), respectively, and determine whether the liquid (6) contains at least one psychoactive component.
Abstract:
A Fourier transform infrared spectrophotometer that is free from an effect of interference condition change resulting from an accessory being mounted and has a high measurement accuracy is provided. A Fourier transform infrared spectrophotometer according to the present invention is a Fourier transform infrared spectrophotometer including a common base on which a sample chamber 2 and an interference optical system are mounted, where an accessory 20 can be detachably in the sample chamber, the Fourier transform infrared spectrophotometer including: accessory information reading means 22 for reading accessory information provided to the accessory 20 when the accessory 20 is mounted in the sample chamber 2; and setting condition changing means (controller 30) for changing a setting condition for the interference optical system based on the accessory information read by the accessory information reading means 22, the setting condition varying depending on, e.g., a difference in weight between respective accessories 20.
Abstract:
A method and system based on spectral domain interferometry for detecting intense THz electric field, allowing the use of thick crystal for spectroscopic purposes, in order to makes long temporal scans for increased spectral resolutions, and overcoming the limitation of over-rotation for presently available high power THz sources. Using this method and system the phase difference of approximately 8898π can be measured, which is 18000 times higher than the phase difference measured by electro-optic sampling ( π/2 ).