Abstract:
A spectral camera for producing a spectral output is disclosed. The spectral camera has an objective lens for producing an image, an array of mirrors, an array of filters for passing a different passband of the optical spectrum for different ones of the optical channels arranged so as to project multiple of the optical channels onto different parts of the same focal plane, and a sensor array at the focal plane to detect the filtered image copies simultaneously. By using mirrors, there may be less optical degradation and the trade off of cost with optical quality can be better. By projecting the optical channels onto different parts of the same focal plane a single sensor or coplanar multiple sensors can to be used to detect the different optical channels simultaneously which promotes simpler alignment and manufacturing.
Abstract:
A spectral camera for producing a spectral output is disclosed. The spectral camera has an objective lens for producing an image, a mosaic of filters for passing different bands of the optical spectrum, and a sensor array arranged to detect pixels of the image at the different bands passed by the filters, wherein for each of the pixels, the sensor array has a cluster of sensor elements for detecting the different bands, and the mosaic has a corresponding cluster of filters of different bands, integrated on the sensor element so that the image can be detected simultaneously at the different bands. Further, the filters are first order Fabry-Perot filters, which can give any desired passband to give high spectral definition. Cross talk can be reduced since there is no longer a parasitic cavity.
Abstract:
A device (1) for detecting particles (2) in air; said device (1) comprising: a flow channel (30), wherein the flow channel (30) is configured to allow a flow of air (12) comprising particles (2) through the flow channel (30); a light source (40) configured to illuminate the particles (2) in the flow of air (12), such that an interference pattern is formed by interference between light being scattered by the particles (2) and non-scattered light from the light source (40); an image sensor (50) configured to detect incident light, the image sensor (50) being configured to detect the interference pattern, and wherein the image sensor (50) is configured to acquire a time-sequence of image frames, each image frame comprising a plurality of pixels, each pixel representing a detected intensity of light; and a frame processor (70) configured to filter information in the time-sequence of image frames, wherein said filtering comprises: identifying pixels of interest in the time-sequence of image frames, said pixels of interest picturing an interference pattern potentially representing a particle (2) in the flow of air (12), and outputting said identified pixels of interest for performing digital holographic reconstruction on the identified pixels of interest.
Abstract:
A spectral camera having an objective lens, an array of lenses for producing optical copies of segments of the image, an array of filters for the different optical channels and having an interleaved spatial pattern, and a sensor array to detect the copies of the image segments is disclosed. Further, detected segment copies of spatially adjacent optical channels have different passbands and represent overlapping segments of the image, and detected segment copies of the same passband on spatially non-adjacent optical channels represent adjacent segments of the image which fit together. Having segments of the image copied can help enable better optical quality for a given cost. Having an interleaved pattern of the filter bands with overlapping segments enables each point of the image to be sensed at different bands to obtain the spectral output for many bands simultaneously to provide better temporal resolution.
Abstract:
Embodiments described herein relate to a large area lens-free imaging device. One example is a lens-free device for imaging one or more objects. The lens-free device includes a light source positioned for illuminating at least one object. The lens-free device also includes a detector positioned for recording interference patterns of the illuminated at least one object. The light source includes a plurality of light emitters that are positioned and configured to create a controlled light wavefront for performing lens-free imaging.
Abstract:
A spectral camera having an objective lens, an array of lenses for producing optical copies of segments of the image, an array of filters for the different optical channels and having an interleaved spatial pattern, and a sensor array to detect the copies of the image segments is disclosed. Further, detected segment copies of spatially adjacent optical channels have different passbands and represent overlapping segments of the image, and detected segment copies of the same passband on spatially non-adjacent optical channels represent adjacent segments of the image which fit together. Having segments of the image copied can help enable better optical quality for a given cost. Having an interleaved pattern of the filter bands with overlapping segments enables each point of the image to be sensed at different bands to obtain the spectral output for many bands simultaneously to provide better temporal resolution.
Abstract:
An integrated circuit for an imaging system has an array of optical sensors (40), and an array of optical filters (10) each configured to pass a band of wavelengths onto one or more of the sensors, the array of optical filters being integrated with the array of sensors, and the integrated circuit also having read out circuitry (30) to read out pixel values from the array of sensors to represent an image, different ones of the optical filters being configured to have a different thickness, to pass different bands of wavelengths by means of interference, to allow detection of a spectrum of wavelengths. The read out circuitry can enable multiple pixels under one optical filter to be read out in parallel. The thicknesses may vary non monotonically across the array. The read out, or later image processing, may involve selection or interpolation between wavelengths, to carry out spectral sampling or shifting, to compensate for thickness errors.