Abstract:
A spectrometer is provided. The spectrometer may include an image sensor including a pixel array; and a photonics layer disposed on the pixel array and including a plurality of resonators and a plurality of couplers evanescently coupled to the plurality of resonators.
Abstract:
Provided are a dual coupler device configured to receive lights of different polarization components, a spectrometer including the dual coupler device, and a non-invasive biometric sensor including the spectrometer. The dual coupler device may include, for example, a first coupler layer configured to receive a light of a first polarization component among incident lights. and a second coupler layer configured to receive a light of a second polarization component among the incident lights, wherein a polarization direction of the light of the first polarization component is perpendicular to a polarization direction of the light of the second polarization component. The first coupler layer and the second coupler layer may be spaced apart from each other and extended along a direction in which the light propagates in the first coupler layer and the second coupler layer.
Abstract:
Embodiments described herein relate to a large area lens-free imaging device. One example is a lens-free device for imaging one or more objects. The lens-free device includes a light source positioned for illuminating at least one object. The lens-free device also includes a detector positioned for recording interference patterns of the illuminated at least one object. The light source includes a plurality of light emitters that are positioned and configured to create a controlled light wavefront for performing lens-free imaging.
Abstract:
Present invention relates to a photonic integrated circuit device (1) comprising a planar detector (2) that comprises at least one photodetector (3). The device further comprises a waveguide layer (4) arranged substantially parallel to the planar detector, the waveguide layer comprising a first integrated waveguide (11) for guiding a first light signal. A cavity (5) is formed in the waveguide layer in a region spaced away from the edges of the waveguide layer such as to terminate the first integrated waveguide in that region. A first reflective surface (6) is provided in the cavity to reflect the first light signal guided by the first integrated waveguide toward a first photodetector (7) of the planar detector.
Abstract:
The present invention relates to an integrated photonic device (1) comprising an image detector (2) that comprises an array of pixels. The device further comprises an integrated waveguide (5) and a light coupler (3) comprising a light receiving part (7) optically coupled to the integrated waveguide (5) for receiving a light signal. The light coupler (3) is adapted for coupling a same predetermined spectral band of the light signal to each of a plurality of pixels of the image detector (2).
Abstract:
The invention relates to an imaging device (1) comprising a photonic integrated circuit (2). This photonic integrated circuit comprises an integrated waveguide (4) for guiding a light signal (5), a light coupler (8) optically coupled to the integrated waveguide (4) and adapted for directing the light signal (5) out of the plane of the waveguide (4) as a light beam (9), and at least one imaging detector (11) positioned for imaging an object (12) illuminated by the light beam (9). The invention also relates to a corresponding method for imaging.
Abstract:
Embodiments described herein relate to a light coupler, a photonic integrated circuit, and a method for manufacturing a light coupler. The light coupler is for optically coupling to an integrated waveguide and for out-coupling a light signal propagating in the integrated waveguide into free space. The light coupler includes a plurality of microstructures. The plurality of microstructures is adapted in shape and position to compensate decay of the light signal when propagating in the light coupler. The plurality of microstructures is also adapted in shape and position to provide a power distribution of the light signal when coupled into free space such that the power distribution corresponds to a predetermined target power distribution. Each of the microstructures forms an optical scattering center. The microstructures are positioned on the light coupler in accordance with a non-uniform number density distribution.
Abstract:
Provided are a dual coupler device configured to receive lights of different polarization components, a spectrometer including the dual coupler device, and a non-invasive biometric sensor including the spectrometer. The dual coupler device may include, for example, a first coupler layer configured to receive a light of a first polarization component among incident lights. and a second coupler layer configured to receive a light of a second polarization component among the incident lights, wherein a polarization direction of the light of the first polarization component is perpendicular to a polarization direction of the light of the second polarization component. The first coupler layer and the second coupler layer may be spaced apart from each other and extended along a direction in which the light propagates in the first coupler layer and the second coupler layer.