摘要:
A non-volatile memory device is provided with a controller and includes method that controls memory operations and to emulate the memory and communication characteristics of a legacy memory device. In this way, the memory device is compatible with a host that was originally designed to operate the legacy memory device. In particular, the controller performs the emulation to the host taking into account differences such as multibit memory, error correction requirement, memory support of overwrites, and erasable block sizes.
摘要:
The present invention presents a non-volatile memory and method for its operation that ensures reliable mechanism for write and erase abort detection in the event of lost of power during non-volatile memory programming and erasing with minimized system performance penalty. During a multi-sector write process, an indication of a successful write in one sector is written into the overhead of the following sector at the same time as the following sector's data content is written. The last sector written will additionally have an indication of its own successful write written into its overhead. For erase, an erase abort flag in the first sector of the block can be marked after a successful erase operation.
摘要:
The present invention allows for an increase in programming parallelism in a non-volatile memory system without incurring additional data transfer latency. Data is transferred from a controller(101) to a first memory chip (131-0) and a programming operation is caused to begin. While that first memory chip (131-0) is busy performing that program operation, data is transferred from the controller(101) to a second memory chip(131-1) and a programming operation is caused to begin in that chip. Data transfer can begin to the first memory chip again once it has completed its programming operation even though the second chip (130-1) is still busy performing its program operation. In this manner high parallelism of programming operation is achieved without incurring the latency cost of performing the additional data transfers. Two sets of embodiments are presented, one that preserves the host data in a buffer (111) until successful programming of that data is confirmed and one that does not require that success be achieved and that does not preserve the data thus achieving a higher rate of data programming throughput.
摘要:
A non-volatile memory system, such as a flash EEPROM system, is disclosed to be divided into a plurality of blocks and each of the blocks into one or more pages, with sectors of data being stored therein that are of a different size than either the pages or blocks. One specific technique packs more sectors into a block than pages provided for that block. Error correction codes and other attribute data for a number of user data sectors are preferably stored together in different pages and blocks than the user data.
摘要:
A powerfully simple digital media player and methods for use therewith are disclosed. In one embodiment, a digital media player with a simplified user interface is disclosed that, like an FM radio, allows a user to easily select a category of digital media for playback. In another embodiment, to make the experience more FM-radio-like for a user, instead of charging the user for the digital audio files, digital media files can be distributed for free (or at a reduced charge) by playing advertisements before, during, or after the playback of a digital audio file. In yet another embodiment, an exemplary network infrastructure is provided. In another embodiment, a generic streaming content file interface is presented. Other embodiments are disclosed, and any of these embodiments can be used alone or in combination with one another.
摘要:
In a nonvolatile memory system a Soft-Input Soft-Output (SISO) decoder corrects errors in data that is read from a memory and a statistical unit connected to the SISO decoder collects data regarding corrections. The statistical unit generates at least one output based on the collected data and at least one operating parameter of the memory is modified in response to the output.
摘要:
The present invention presents several techniques for using writable tracking cells. Multiple tracking cells are provided for each write block of the memory. These cells are re-programmed each time the user cells of the associated write block are written, preferably at the same time, using the same fixed, global reference levels to set the tracking and user cell programmed thresholds. The threshold voltages of the tracking cells are read every time the user cells are read, and these thresholds are used to determine the stored logic levels of the user cells. In one set of embodiments, populations of one or more tracking cells are associated with different logic levels of a multi-state memory. These tracking cell populations may be provided for only a subset of the logic levels. The read points for translating the threshold voltages are derived for all of the logic levels based upon this subset. In one embodiment, two populations each consisting of multiple tracking cells are associated with two logic levels of the multi-bit cell. In an analog implementation, the user cells are read directly using the analog threshold values of the tracking cell populations without their first being translated to digital values. A set of alternate embodiments provide for using different voltages and/or timing for the writing of tracking cells to provide less uncertainty in the tracking cells' final written thresholds.
摘要:
A buffer cache interposed between a non-volatile memory and a host may be partitioned into segments that may operate with different policies. Cache policies include write-through, wire and read-look-ahead. Write-through and write back policies may improve speed. Read-look-ahead cache allows more efficient use of the bus between the buffer cache and non-volatile memory. A session command allows data to be maintained in volatile memory by guaranteeing against power loss.
摘要:
In order to maintain the integrity of data stored in a flash memory that are susceptible to being disturbed by operations in adjacent regions of the memory, disturb events cause the data to be read, corrected and re-written before becoming so corrupted that valid data cannot be recovered. The sometimes conflicting needs to maintain data integrity and system performance are balanced by deferring execution of some of the corrective action when the memory system has other high priority operations to perform. In a memory system utilizing very large units of erase, the corrective process is executed in a manner that is consistent with efficiently rewriting an amount of data much less than the capacity of a unit of erase.
摘要:
Data in less than all of the pages of a non-volatile memory block are updated by programming the new data in unused pages of either the same or another block. In order to prevent having to copy unchanged pages of data into the new block, or to program flags into superceded pages of data, the pages of new data are identified by the same logical address as the pages of data which they superceded and a time stamp is added to note when each page was written. When reading the data, the most recent pages of data are used and the older superceded pages of data are ignored. This technique is also applied to metablocks that include one block from each of several different units of a memory array, by directing all page updates to a single unused block in one of the units.