摘要:
The memory device comprises: a series string of memory cells; a current sensing circuit coupled to a bit line of the series string of memory cells and configured to generate a sense amplifier control signal in response to detection of a bit line current generated by a read threshold voltage on a word line of the series string of memory cells; a voltage generator coupled to the word line and configured to generate a ramped voltage on which the read threshold voltage is located; and a sample/hold and comparator circuit (802) coupled to the bit line, the circuit comprising: a first capacitor (813) coupled to the voltage generator through a first switch (810) and configured to store a representation of the read threshold voltage; a first operational amplifier-driver (820) coupled to the first capacitor (813) and configured to output data representative of the read threshold voltage; a second capacitor (805) coupled to the voltage generator through a second switch (806) and configured to store a representation of a target threshold voltage; and a second operational amplifier-driver (807) coupled to the second capacitor (805) and to the output of the first operational amplifier driver (820), the second operational amplifier-driver (807) configured to generate an inhibit signal in response to the sense amplifier control signal and a comparison of the representation of the read threshold voltage with the representation of the target voltage.
摘要:
Memory states of a multi-bit memory cell are demarcated by generating read reference signals having levels that constitute boundaries of the memory states. The read reference signals are dependent upon the levels of programming reference signals used for controlling the programming of the memory cell. The memory cell can thus be programmed without reading out its memory state during the programming process, with programming margins being assured by the dependence of the read reference signals on the programming reference signals. Both pets of reference signals may be generated by reference cells which track variations in the operating characteristics of the memory cell with changes in conditions, such as temperature and system voltages, to enhance the reliability of memory programming and readout.
摘要:
Methods and apparatus for soft data generation for memory devices using decoder performance feedback. At least one soft data value is generated in a memory device, by obtaining performance feedback from a decoder; obtaining an error statistic based on the performance feedback; and generating the at least one soft data value based on the obtained error statistic. The performance feedback comprises one or more of decoded bits, a number of erroneous bits based on data decoded by the decoder and a number of unsatisfied parity checks.
摘要:
Methods and apparatus are provided for soft data generation for memory devices. At least one soft data value is generated for a memory device, by obtaining at least one hard read value; and generating the soft data value associated with the at least one hard read value based on statistics for reading the hard read value. The hard read value may be one or more of data bits, voltage levels, current levels and resistance levels. The generated soft data value may be one or more of (i) a soft read value that is used to generate one or more log likelihood ratios, and (ii) one or more log likelihood ratios. The statistics comprise one or more of bit-based statistics and cell-based statistics. The statistics may also optionally comprise pattern-dependent disturbance of at least one aggressor cell on the target cell, as well as location-specific statistics. At least one soft data value can be generated for a memory device, by obtaining a soft read value; and generating the soft data value associated with the soft read value based on statistics for reading the soft read value, wherein the statistics comprise one or more of location-specific statistics and pattern-dependent statistics.
摘要:
The present invention is a method, circuit and system for determining a reference voltage to be used in reading cells programmed to a given program state. Some embodiments of the present invention relate to a system, method and circuit for establishing a set of operating reference cells to be used in operating (e.g. reading) cells in a NVM block or array. As part of the present invention, at least a subset of cells of the NVM block or array may be read and the number of cells found at a given state associated with the array may be compared to one or more check sum values obtained during programming of the at least a subset of cells. A Read Verify threshold reference voltage associated with the given program state or associated with an adjacent state may be adjusted based on the result of the comparison.
摘要:
The present invention is a method, circuit and system for determining a reference voltage to be used in reading cells programmed to a given program state. Some embodiments of the present invention relate to a system, method and circuit for establishing a set of operating reference cells to be used in operating (e.g. reading) cells in a NVM block or array. As part of the present invention, at least a subset of cells of the NVM block or array may be read and the number of cells found at a given state associated with the array may be compared to one or more check sum values obtained during programming of the at least a subset of cells. A Read Verify threshold reference voltage associated with the given program state or associated with an adjacent state may be adjusted based on the result of the comparison.
摘要:
A method for programming a memory cell is based on applying stress to a memory cell, comprising a first electrode, a second electrode and an inter-electrode layer, to induce a progressive change in a property of the inter-electrode layer. The method includes a verify step including generating a signal, such as a cell current, indicating the value of the property in the selected memory cell. Then, the signal is compared with a reference signal to verify programming of the desired data. Because of the progressive nature of the change, many levels of programming can be achieved. The many levels of programming can be applied for programming a single cell more than once, without an erase process, to programming multiple bits in a single cell, and to a combination of multiple bit and multiple time of programming.