摘要:
The invention relates to an imaging optical device, comprising a light source arrangement (25) and an illumination beam path (3) which is separated from an observation beam path (11) at least in sections. An illumination lens arrangement (4) is provided in the illumination beam path (3) and an observation lens arrangement (12) is provided in the observation beam path (11). In the illumination beam path (3), an illumination field stop (2) is provided at a distance from the illumination lens arrangement (4), an object (32) to be imaged lying in the illumination image plane (27) into which the illumination lens arrangement (4) projects a representation of the illumination field stop (2) and the observation lens arrangement (12) projecting a representation of the object (32)to be imaged into the observation image plane (28). The invention is characterised in that at least one spatial filter (17, 18) which is optionally formed by a stop is located in the observation beam path (11) outside of the observation image plane (28).Said spatial filter(s) and the illumination field stop (2), as well as an optionally provided observation field stop (13), are preferably mounted in a fixed geometrical manner in relation to each other in such a way that they are can move, preferably oscillate.
摘要:
Eine Korrektur-Vorrichtung für eine einen Strahlengang aufweisende, abbildende optische Anordnung (1), insbesondere für ein Mikroskop, weist mindestens eine planparallele transparente Platte (9) auf, die in einer Halterung im Abbildungsstrahlengang gehalten ist und durch diese in einer Kipp- und/oder Schwenkbewegung um mindestens eine Achse antreibbar ist, um durch Veränderung der Kipplage der Platte (9) einen bestimmten Parallelversatz der Strahlen im Abbildungsstrahlengang einzustellen. Ein konfokales Mikroskop mit einer solchen Korrekturvorrichtung weist eine konfokale Blende (4) auf, die ein Probenspot (10) abbildet, wobei die planparallele Platte (9) im Strahlengang der Detektoreinheit (2) vorgeordnet ist, um die Abbildung der Aperturblende auf die Detektoreinheit zu zentrieren.
摘要:
Für ein konfokales Raster-Mikroskop (1) ist eine Zoom-Optik (41) vorgesehen, die nicht nur eine Zoomfunktion ermöglicht, indem eine variable Vergrößerung bei einer Abbildung ermöglicht ist, sondern die zusätzlich eine Pupillenabbildung im Beleuchtungsstrahlengang (BS) realisiert und dabei eine veränderliche Abbildungslänge (Abstand zwischen ursprünglicher (EP) und abgebildeter Pupille (AP)) ermöglicht, so daß damit axial variierende Objektivpupillenlagen kompensiert werden können.
摘要:
The invention concerns a doublet system for a microscope, with one lens (25) being provided for focusing object illumination onto an object point, and one lens (33) for collecting light emitted by the object point. The optical axes of the two lens systems (25, 33) are at a slant to one another, so that the direction of observation and the direction of illumination are at an angle to one another. The two lens systems (25, 33) are grouped together into a doublet unit (1) on a joint holder (3); light can be supplied to this unit from an object illumination source, through a light aperture (5). A light deflection system (19, 21, 23, 37, 39) is also provided, which distorts the illumination path (35) and/or the observation path (35) in such a way that the observation light coming from the observation lens (33) leaves the doublet unit (1) through the light aperture (5). Thus the doublet unit can be employed in a conventional microscope design.
摘要:
The invention relates to an imaging optical device, comprising a light source arrangement (25) and an illumination beam path (3) which is separated from an observation beam path (11) at least in sections. An illumination lens arrangement (4) is provided in the illumination beam path (3) and an observation lens arrangement (12) is provided in the observation beam path (11). In the illumination beam path (3), an illumination field stop (2) is provided at a distance from the illumination lens arrangement (4), an object (32) to be imaged lying in the illumination image plane (27) into which the illumination lens arrangement (4) projects a representation of the illumination field stop (2) and the observation lens arrangement (12) projecting a representation of the object (32)to be imaged into the observation image plane (28). The invention is characterised in that at least one spatial filter (17, 18) which is optionally formed by a stop is located in the observation beam path (11) outside of the observation image plane (28).Said spatial filter(s) and the illumination field stop (2), as well as an optionally provided observation field stop (13), are preferably mounted in a fixed geometrical manner in relation to each other in such a way that they are can move, preferably oscillate.
摘要:
To provide an optical image separation system, connected to the confocal image output port of a Nipkow disk type confocal scanner, the system being capable of detecting the light returned from a sample and emitted from the above confocal image output port by separating the return light into a plurality of different wavelength regions respectively, and of holding the throughput high without increasing the cost. Optical image separation system 300 is realized, which is provided with a dichroic mirror or dichroic mirrors 30 (return light separating means) that separates return light 7 from sample 60, emitted from confocal image output port 110 of confocal scanner 100.
摘要:
The invention concerns a doublet system for a microscope, with one lens (25) being provided for focusing object illumination onto an object point, and one lens (33) for collecting light emitted by the object point. The optical axes of the two lens systems (25, 33) are at a slant to one another, so that the direction of observation and the direction of illumination are at an angle to one another. The two lens systems (25, 33) are grouped together into a doublet unit (1) on a joint holder (3); light can be supplied to this unit from an object illumination source, through a light aperture (5). A light deflection system (19, 21, 23, 37, 39) is also provided, which distorts the illumination path (35) and/or the observation path (35) in such a way that the observation light coming from the observation lens (33) leaves the doublet unit (1) through the light aperture (5). Thus the doublet unit can be employed in a conventional microscope design.
摘要:
Um die konfokale Abbildungstechnik in einem Raster-Lasermikroskop im Durchlichtbetrieb anwenden zu können, war man bisher gezwungen, die zu untersuchende Probe (IC) horizontal im Laserstrahl (LA) zu verschieben. Dieses Verfahren ist äußerst zeitaufwendig, insbesondere wenn die Messung die Abtastung einer Vielzahl von Probenpunkten erfordert. Das erfindungsgemäße Raster-Lasermikroskop verwendet eine Kollektorlinse (KL), um die auf der Probenunterseite divergent austretende Laserstrahlung zu bündeln und einem als Reflektor dienenden Tripelprisma (TP) zuzuleiten. Da das Tripelprisma (TP) das einfallende Strahlenbündel parallel zu sich selbst reflektiert und die Brennebenen (BE) der Kollektor- und der Objektivlinse (KL, OL) zusammenfallen, durchläuft die Laserstrahlung erneut den Meßstellenbereich (FO). Die auf der Probenoberseite austretende Laserstrahlung (LA') wird von der Objektivlinse (OL) erfaßt, in der Ablenkeinheit (S) umgelenkt und mit Hilfe eines Strahlteilers (HS) ausgekoppelt. Ein konfokaler Strahlengang gewährleistet eine hohe Tiefenauflösung, die etwa dem 0,7fachen der Wellenlänge der verwendeten Laserstrahlung (LA) entspricht.
摘要:
The invention relates to an optical device (1) for measuring the position of an object (B) along a first axis (z), the object (B) being subjected to light radiations emitted by a light source (2, 21, 22), the optical device (1) comprising: - an imaging system (5) comprising an objective for collecting light radiations diffused by the object (B), the imaging system (5) having an optical axis (O) extending parallel to the first axis (z), - a transmission mask (8) having at least a first aperture (81, 83) and a second aperture (82, 84), the first aperture and second aperture being spaced from each other along a second axis (x), perpendicular to the first axis (z), the transmission mask (8) being arranged so as to let a first part of the radiations (R1) and a second part of the radiations (R2) which are diffused by the object (B) pass through the first aperture and the second aperture respectively, while blocking a part of the radiations (R3) emitted by the light source which is not diffused by the object, and - a detector (6) adapted for generating an image including a first spot (S1) and a second spot (S2) representative of the first part (R1) and second part (R2) of the radiations impacting the detector plane (61), wherein variation of the position of the object (B) relative to the object plane of the imaging system (5) along the first axis (z) causes variation of a position of the first spot (S1) and of the second spot (S2) relative to each other along the second axis (x).
摘要:
Arrangements and methods are provided for obtaining information associated with an anatomical sample. For example, at least one first electro-magnetic radiation can be provided to the anatomical sample so as to generate at least one acoustic wave in the anatomical sample. At least one second electro-magnetic radiation can be produced based on the acoustic wave. At least one portion of at least one second electro-magnetic radiation can be provided so as to determine information associated with at least one portion of the anatomical sample. In addition, the information based on data associated with the second electro-magnetic radiation can be analyzed. The first electro-magnetic radiation may include at least one first magnitude and at least one first frequency. The second electro-magnetic radiation can include at least one second magnitude and at least one second frequency. The data may relate to a first difference between the first and second magnitudes and/or a second difference between the first and second frequencies. The second difference may be approximately between -100 GHz and 100 GHz, excluding zero.