Abstract:
A spectroscopic microscope includes a laser or other light source which emits light from the entrance aperture of its spectrograph, and also includes a light sensor situated on the microscope sample stage upon which a specimen is to be situated for microscopic/spectrometric analysis. The sample stage is positioned such that the signal from the light sensor is maximized, thereby indicating good alignment between the sample stage and spectrograph. Additionally, the microscope sample stage bears a light source which can emit light to be detected by a light sensor situated at the vantage point of a user/viewer utilizing the microscope, and such a light sensor can simply take the form of a video camera or other image recordation unit associated with the microscope. The sample stage can also be positioned to optimize the signal at the light sensor to signify good alignment between the sample stage and the microscope.
Abstract:
The disclosure relates to a portable and/or handheld bioagent detector and methodology described herein that is based in part on advanced Raman Chemical Imaging ('RCI') technology. According to one embodiment of the present disclosure, the detection system may include a fiber array spectral translator ('FAST') and may also include a probe which may include a complementary metal oxide semiconductor (CMOS) camera. The probe alleviates the need to place the main instrument close to an unconfined release of a potentially hazardous material and facilitates analysis of a sample that is situated in a hard-to-reach location while minimizing contamination of the detector and operator.
Abstract:
A method for providing an intensity or brightness measurement using a digital image-capturing device comprising: selecting a target area within a field of view of the image-capturing device, the target area containing pixels; determining the brightness of pixels in the target area; accumulating the brightness values of the pixels in the target area; and determining a pixel value representative of the pixels in the target area. A device for making color measurements comprising an image-capture device, a processor or logic device, and a memory location for accumulating color data, and the processor or logic device is programmed to perform color measurements by accumulating the data for pixels located in the target area in memory, and determining a representative color value.
Abstract:
Für die farbmetrische Ausmessung einer zweidimensionalen Vorlage wird in einem ersten Schritt die Vorlage mittels einer farbtauglichen fotoelektrischen Abtasteinrichtung (20) punktweise fotoelektrisch abgetastet, und aus den dabei gewonnenen Abtastwerten wird eine digitale Farbdarstellung (41) der Vorlage erzeugt. In einem zweiten Schritt werden aus der digitalen Farbdarstellung (41) der Vorlage nach Methoden der Bildverarbeitung mittels eines Rechners (R) geeignete Messpositionen (43) ermittelt. In einem dritten Schritt wird der Farbmesskopf (30) rechnergesteuert automatisch an die so ermittelten Messpositionen (43) gefahren und die Vorlage an diesen Messpositionen farbmetrisch ausgemessen. Die dabei gewonnenen Farbmesswerte (44) können z.B. zur Erzeugung von Geräteprofilen oder zur farbmetrischen Regelung von Ausgabegeräten weiterverarbeitet werden. Als Abtasteinrichtung wird vorzugsweise ein hochauflösender Flachbett- oder Einzugscanner oder einen digitale Kamera verwendet. Der Farbmesskopf ist vorzugsweise ein Spektralmesskopf. Durch die vergleichsweise hochauflösende punktweise Abtastung der Vorlage können die Messpositionen ohne manuelle Eingaben sehr genau und ohne zeitraubende Mehrfachmessungen ermittelt werden. Außerdem können z.B. durch Verschmutzung bedingte Artefakte erkannt und korrigiert werden.
Abstract:
A sensing apparatus consisting of more than one diode laser having select lasing frequencies, a multiplexer optically coupled to the outputs of the diode lasers with the multiplexer being further optically coupled to a pitch side optical fiber. Multiplexed laser light is transmitted through the pitch side optical fiber to a pitch optic operatively associated with a process chamber which may be a combustion chamber or the boiler of a coal or gas fired power plant. The pitch optic is oriented to project multiplexed laser output through the process chamber. Also operatively oriented with the process chamber is a catch optic in optical communication with the pitch optic to receive the multiplexed laser output projected through the process chamber. The catch optic is optically coupled to an optical fiber which transmits the multiplexed laser output to a demultiplexer. The demultiplexer demultiplexes the laser light and optically couples the select lasing frequencies of light to a detector with the detector being sensitive to one of the select lasing frequencies.
Abstract:
A disc serving as a spatial radiation modulator has dispersed radiation filters thereon. Each filter has a transmittance or reflectance modulation function of the form sin 2 (mθ +π/4), where m is a positive integer and p has one of the four values 0, 1, 2, 3. A radiation beam including selected wavelength components is diffracted into an elongated image dispersed according to wavelength. Different wavelength components are focused onto different filters on the modulator and are encoded by corresponding filters. Since the modulation functions of the filters are orthogonal to one another, it is possible to extract the amplitude of each wavelength component after it has been encoded or modulated by corresponding filter from the total detected signal during one measurement.
Abstract:
A sensing apparatus consisting of more than one diode laser having select lasing frequencies, a multiplexer optically coupled to the outputs of the diode lasers with the multiplexer being further optically coupled to a pitch side optical fiber. Multiplexed laser light is transmitted through the pitch side optical fiber to a pitch optic operatively associated with a process chamber which may be a combustion chamber or the boiler of a coal or gas fired power plant. The pitch optic is oriented to project multiplexed laser output through the process chamber. Also operatively oriented with the process chamber is a catch optic in optical communication with the pitch optic to receive the multiplexed laser output projected through the process chamber. The catch optic is optically coupled to an optical fiber which transmits the multiplexed laser output to a demultiplexer. The demultiplexer demultiplexes the laser light and optically couples the select lasing frequencies of light to a detector with the detector being sensitive to one of the select lasing frequencies.
Abstract:
An LED-based color measurement instrument including an illumination system and a sensing system. The illumination system includes modulated LEDs and a temperature control system for regulating the temperature of the LEDs, thereby improving the consistency of their performance. The sensing system includes a photodiode, a transimpedance amplifier, and an integrator in the first stage to cancel the effect of ambient light on the output of the first stage. The sensing system also includes a lens system for imaging a target area of the target sample onto the photo sensor in a manner so that the product of the target area times the solid angle captured by the lens system is generally uniform over a selected range of distances, thereby reducing the positional sensitivity of the instrument with respect to the target sample.
Abstract:
Color measurement instrument (10) including an integrating sphere (12), a beam splitter (16), a video camera (18), and a spectrograph (20). The beam splitter (16) is aligned with the viewing port (32) of the spectrophotometer to deliver the light reflected from the sample (S) to both the video camera (18) and the spectrograph (20). The video camera (18) provides an image of the position of the sample (S) with respect to the viewing port (32) of the sphere (12), enabling the visual observation and evaluation of the sample position prior to use of the spectrophotometer.
Abstract:
Zur optischen Markierung des von einem Farbmessgerät (101) auf einer Messfläche (103) erfassten Zielbereichs (104) wird mittels einer von einem Rechner (102) gesteuerten Anzeigeeinrichtung (100) auf der Messfläche (103) ein zweidimensionales Farbmuster (106) dargestellt, welches in jedem Punkt einen einmaligen eindeutigen Farbwert aufweist. Das Farbmessgerät (101) wird auf die Messfläche (103) gerichtet und der Farbwert des vom Farbmessgerät erfassten Zielbereichs (104) wird gemessen. Aus dem gemessenen Farbwert werden die Koordinaten des Zielbereichs (104) auf der Messfläche (103) berechnet und an dem durch die berechneten Koordinaten des Zielbereichs gegebenen Ort der Messfläche (103) wird eine optische Marke (105) dargestellt, welche die Lage des Zielbereichs (104) auf der Messfläche (103) visualisiert.