Abstract:
The invention is directed to a discharge device and a cathode for use in such a discharge device. By providing a dielectric layer between a first and a second electrode, e.g. between a cathode and an anode, said dielectric layer having an opening aligned with a micro hollow of the first electrode, the light efficiency of the discharge device can be improved.
Abstract:
A large-area electron source (22) which can operate continuously, stably, and indefinitely in a poor vacuum (20) environment. The source includes a glow discharge cathode, appropriately positioned with respect to a target anode (30) and a fine-mesh grid (26) spaced from the cathode (22) by a distance less than the mean free path length of electrons leaving the cathode (22), the grid (26) being electrically biased to control the electron beam current over a wide range with only small grid voltage changes. An accelerating voltage (29) applied to the cathode (22) can be varied continuously from as low as a few hundred volts to 30 KeV or greater and the source will continue to operate satisfactorily. Further, the grid (26) is made of a fine mesh wire of sufficiently small dimensions as to not be resolvable in the target plane (30). A further refinement of the device utilizes scanning coils (34) to achieve additional uniformity of the incident beam at the target plane (30). The basic apparatus of the invention can be combined with other features, for use in shadow mask lithography, resist sensitivity measurement, lift off processing, and resist curing.
Abstract:
La présente invention concerne une source d'électrons comprenant, dans une enceinte à basse pression, une anode (A), une cathode (K) et des moyens d'application d'un champ magnétique (13). La cathode est constituée d'une cavité équipotentielle (10) munie d'une ouverture (11) du côté de l'anode. Le champ magnétique est appliqué parallèlement à la direction anode-cathode au niveau de l'ouverture.
Abstract:
A linear plasma electron source (100) is provided. The linear plasma electron source includes a housing (112) acting as a first electrode, the housing having side walls (312), a slit opening (114) in the housing for trespassing of a electron beam, the slit opening defining a length direction of the source, a second electrode (110) being arranged within the housing and having a first side (413) facing the slit opening, the first side being spaced from the slit opening by a first distance, wherein the length of the electron source in the length direction is at least 5 times the first distance, and at least one gas supply (70) for providing a gas into the housing.
Abstract:
A linear plasma electron source (100) is provided. The linear plasma electron source includes a housing (112) acting as a first electrode, the housing having side walls (312), a slit opening (114) in the housing for trespassing of a electron beam, the slit opening defining a length direction of the source, a second electrode (110) being arranged within the housing and having a first side (413) facing the slit opening, the first side being spaced from the slit opening by a first distance, wherein the length of the electron source in the length direction is at least 5 times the first distance, and at least one gas supply (70) for providing a gas into the housing.
Abstract:
Field emission nanostructures (18) assist operation of a microdischarge device. The field emission nanostructures are integrated into the microdischarge device(s) or are situated near an electrode (14, 16, 36, 38) of the microdischarge device(s). The field emission nanostructures reduce operating and ignition voltages compared to otherwise identical device lacking the field emission nanostructures, while also increasing the radiative output of the microdischarge device(s).
Abstract:
Die Erfindung betrifft eine Quelle zur Erzeugung von gepulsten Ionen- und Elektronenstrahlen. Mit ihr wird ein in seinem Strahlquerschnitt großflächiger Strom geladener Teilchen erzeugt. Die Vakuum-Bogenplasmaquelle wird durch eine den Gesamtstrom bestimmende Last, die aus der Parallelschaltung eines ohmschen Widerstands mit einem Kondensator besteht, zur sichern Zündung geführt. Diese Last ist an den Innenwiderstand des Pulsspannungsgenerators leistungsangepaßt. Die Dimensionierung der elektrischen Bauteile an den Elektroden unter Berücksichtigung vorgegebener Schranken ermöglicht einen in seinem Strahlquerschnitt homogenen Strom geladener Teilchen, der aus ein und demselben Ladungsteilchen bei gleichen Zündelektroden oder aus einem strukturierten Strom unterschiedlicher Teilchensorten bei unterschiedlichem Zündelektrodenmaterial besteht.