摘要:
A preferred modular microplasma microchannel reactor device includes a microchannel array arranged with respect to electrodes for generation of plasma and isolated by dielectric from the electrodes. A cover covers a central portion of the microchannel array, while leaving end portions of the microchannel array exposed. A gas inlet and product outlet are arranged to permit flow into, through and out of the microchannel array. Reactor modules of the invention include pluralities of the modular reactor devices. The reactors devices can be arranged by a housing or a frame to be in fluid communication. A system of the invention arranges pluralities of modules. Preferred module housings, frames and reactors include structural features to create alignments and connections. Preferred modules include fans to circulate feedstock and reaction product. Other reactor devices provide plasma actuation for flow.
摘要:
A method for fabricating microcavity discharge devices and arrays of devices. The devices are fabricated by layering a dielectric (1020, 220) on a first conducting layer or substrate (210, 1010). A second conducting layer or structure is overlaid on the dielectric layer. In some devices, a microcavity (1040, 212) is created that penetrates the second conducting layer or structure and the dielectric layer. In other devices, the microcavity penetrates to the first conducting layer. The second conducting layer or structure together with the inside face of the microcavity is overlaid with a second dielectric layer. The microcavities are then filled with a discharge gas. When a time- varying potential of the appropriate magnitude is applied between the conductors, a microplasma discharge is generated in the microcavity. These devices can exhibit extended lifetimes since the conductors are encapsulated, shielding the conductors from degradation due to exposure to the plasma. Some of the devices are flexible and the dielectric can be chosen to act as a mirror.
摘要:
An embodiment of the invention is a microdischarge device including a first electrode (230) encapsulated in a dielectric, which may be a nanoporous dielectric film. A second electrode (240) is provided which may also be encapsulated with a dielectric. The electrodes are configured to ignite a discharge in a microcavity when a time-varying (an AC, RF, bipolar or a pulsed DC, etc.) potential is applied between the electrodes. In specific embodiments of the invention, the second electrode may be a screen covering the microcavity opening and the microcavity may be closed at one end. In some embodiments of the invention, the second electrode may be in direct contact with the first electrode. In other embodiments, a gap separates the electrodes. In a preferred method of manufacturing microdischarge devices with encapsulated electrodes, a metal substrate is used to form a nanoporous dielectric encapsulated electrode and dissolve a portion of the dielectric layer. The dielectric layer is then anodized a second time, resulting in a nanoporous dielectric encapsulated electrode with improved regularity of the nanoscale dielectric structures. In some embodiments of the invention, the columnar voids in the dielectric may be backfilled with one or more materials to further tailor the properties of the dielectric.
摘要:
Field emission nanostructures (18) assist operation of a microdischarge device. The field emission nanostructures are integrated into the microdischarge device(s) or are situated near an electrode (14, 16, 36, 38) of the microdischarge device(s). The field emission nanostructures reduce operating and ignition voltages compared to otherwise identical device lacking the field emission nanostructures, while also increasing the radiative output of the microdischarge device(s).