Abstract:
The present invention relates to a method and system for fibre positioning in wide-field astronomy. In one form the method and system of the present invention relate to anchoring fibre end points adjacent or against the field plate of a telescope. In one embodiment the positioning system for anchoring a fibre end point at a location on a telescope field plate collocated with a telescope focal plane, the positioning system comprising a piezoelectric positioning device for positioning the fibre end point, the positioning device comprising a chamber having an opening, the opening lying against the field plate in use defining a substantially enclosed volume inside the chamber, a pump for reducing pressure inside the enclosed volume; and a path connecting the pump and the enclosed volume so that, in use, the pump effects a reduction in pressure in the chamber thereby anchoring the fibre end point on the field plate.
Abstract:
An apparatus and source arrangement for filtering an electromagnetic radiation can be provided which may include at least one spectral separating arrangement (200) configured to physically separate one or more components (320, 340) of the electromagnetic radiation based on a frequency of the electromagnetic radiation. The apparatus and source arrangement may also have at least one continuously rotating optical arrangement, e.g., a spinning reflector disk scanner (500), which is configured to receive at least one signal that is associated with the one or more components (320, 340). Further, the apparatus and source arrangement can include at least one beam selecting arrangement configured to receive the signal. Rotating disk (500) may comprise reflecting patterns (520) to generate a wavelength scan depending on the rotation frequency of the disk (500).
Abstract:
Provided is a detection optical system that is provided with a dispersed-light detection function and that can increase the amount of detected light by enhancing the diffraction efficiency. A detection optical system 10 is employed which includes a transmissive VPH diffraction grating 11 that disperses fluorescence from a specimen into a plurality of wavelength bands; a rotating mechanism that rotates the VPH diffraction grating 11 about an axial line L that is perpendicular to an incident optical axis of the fluorescence from the specimen and an emission optical axis from the VPH diffraction grating 11; a light detection portion 15 that detects the fluorescence from the specimen that has been dispersed by the VPH diffraction grating 11; and a correcting portion that corrects an incident position on the light detection portion 15 in accordance with a displacement of the optical axis caused by the rotation of the VPH diffraction grating 11 in synchronization with the rotating mechanism.
Abstract:
The present invention provides a small spectrocsope that has a short response time. A spectroscope according to an embodiment includes a beam deflector that includes an electro-optic crystal, having an electro-optic effect, and paired electrodes used to apply an electric field inside the electro-optic crystal; spectroscopic means for dispersing light output by the beam deflector; and wavelength selection means for selecting light having an arbitrary wavelength from the light dispersed and output by the spectroscopic means. At the least, either an input end or an output end of the beam deflector is wedge shaped, so that a thickness of the end is gradually reduced from the first face, where the first electrode of the paired electrodes is located, toward the second face, opposite the first face, where the second electrode of the paired electrodes is located.
Abstract:
A spectral distribution measuring device includes an illumination unit (13) configured to illuminate white light to a surface of an object (12) being measured; a slit array (15) having a plurality of slits formed in alignment at equal intervals; a linear image sensor (18) including a light receiving face (18b) having a plurality of rectangular pixels (19) adjacently arranged in alignment and a plurality of spectral light-irradiated areas divided in each predetermined number of neighboring pixels; a plurality of areas being measured which is set on the surface of the object being measured, and reflects the light irradiated by the illumination unit to the plurality of slits; and a diffraction unit (17) configured to diffract and disperse reflection light which is reflected from the areas being measured and has passed through each slit, the diffraction unit being disposed such that a direction where a diffraction image expands is inclined at an angle to a direction where the light receiving face expands.
Abstract:
A terahertz time-domain spectrometer scanning sensor system includes a transmitter and a receiver that are secured to a mobile scanner head. Optical pump light, in the form of short pulses launched from a stationary laser located remotely from the scanner head, is delivered to the transmitter and receiver through a controlled fiber optic cable arrangement so that variations in temporal pulse relays that are associated fiber optic transmission are minimized. In this fashion, the movement of the fiber optic cable is maneuvered along a defined path so as to control the bends in the cable and thus minimize variations in temporal delays that can otherwise arise as the pulses of light are transmitted through the fiber. Pulses of laser light launched from the laser into the optical fiber will exit the cable with consistent (i) time of arrival, (ii) phase duration, and (iii) polarization state and energy.
Abstract:
Ein Verfahren zur Wellenlängenkalibrierung von Echellespektren, bei denen sich die Wellenlängen auf eine Mehrzahl von Ordnungen verteilen, ist gekennzeichnet durch die Schritte: Aufnehmen eines linienreichen Referenzspektrums mit bekannten Wellenlängen für eine Vielzahl der Linien, Bestimmen der Lage einer Vielzahl von Peaks des Referenzspektrums in dem aufgenommenen Spektrum, Auswählen von wenigstens zwei ersten Linien mit bekannter Ordnung, Lage und Wellenlänge, Bestimmen einer Wellenlängenskala für die Ordnung, in welcher die bekannten Linien liegen, durch eine Fitfunktion λ m (x), Bestimmen einer vorläufigen Wellenlängenskala λ m±1 (x) für wenigstens eine benachbarte Ordnung m±1 durch Addition/Subtraktion einer Wellenlängendifferenz Δλ FSR , die einem freien Spektralbereich entspricht nach λ m±1 (x) = λ m (x) ± Δλ FSR , mit Δλ FSR =λ m (x)/m, Bestimmen der Wellenlängen von Linien in dieser benachbarten Ordnung m±1 mittels der vorläufigen Wellenlängenskala λ m±1 (x), Ersetzen der vorläufigen Wellenlänge von wenigstens zwei Linien durch die nach Schritt (a) vorgegebene Referenzwellenlänge dieser Linien, und Wiederholen der Schritte (d) bis (g) für wenigstens eine weitere benachbarte Ordnung.