Abstract:
According to the present invention there is provided an actuator comprising, a movable member, the movable member comprising a support frame which is configured such that it can oscillate about a first oscillation axis and a mirror which is fixed to the support frame such that oscillation of the support frame will effect oscillation of the mirror; an coil, which cooperates with the support frame; one or more boundary portions provided between the support frame and the mirror which reduce the influence of warp transmitted from an edge of the support frame to the mirror, as the support frame oscillates about the first oscillation axis; wherein the support frame further comprises one or more cut-out regions, wherein the one or more cut-out regions are configured to be parallel to at least a portion of the coil, to reduce stress on the coil as the support frame oscillates about the first oscillation axis and/or to reduce the temperature dependence of the properties of the actuator.
Abstract:
Le dispositif comporte un premier plot d'actionnement (5) en matériau électriquement conducteur avec une première surface de contact. Un second plot d'actionnement (6) en matériau électriquement conducteur fait face au premier plot d'actionnement (5). Un circuit d'actionnement (7) électrostatique déplacent les plots d'actionnement (5, 6) l'un par rapport à l'autre entre une première position et une autre position. Le circuit d'actionnement (7) comporte un dispositif d'application d'un potentiel plus important sur le second plot d'actionnement (6) que sur le premier plot d'actionnement (5). Un film (8) en matériau électriquement isolant réalise l'isolation électrique entre les premier (5) et second (6) plots. Le film (8) en matériau électriquement isolant comporte une interface avec une source (11) en ions positifs et est perméable auxdits ions positifs. La source en ions positifs (11) est dépourvue de vapeur d'eau.
Abstract:
A method of manufacturing a micro-electromechanical systems (MEMS) device, comprising providing a base layer (10) and a mechanical layer (12) on a substrate (14), providing a sacrificial layer (16) between the base layer (10) and the mechanical layer (12), providing an etch stop layer (18) between the sacrificial layer (16) and the substrate (14), and removing the sacrificial layer (16) by means of dry chemical etching, wherein the dry chemical etching is performed using a fluorine-containing plasma, and the etch stop layer (18) comprises a substantially non-conducting, fluorine chemistry inert material, such as Hf02, ZrO2, Al203 or TiO2
Abstract:
A method of manufacturing a micro-electromechanical systems (MEMS) device, comprising providing a base layer (10) and a mechanical layer (12) on a substrate (14), providing a sacrificial layer (16) between the base layer (10) and the mechanical layer (12), providing an etch stop layer (18) between the sacrificial layer (16) and the substrate (14), and removing the sacrificial layer (16) by means of dry chemical etching, wherein the dry chemical etching is performed using a fluorine-containing plasma, and the etch stop layer (18) comprises a substantially non-conducting, fluorine chemistry inert material, such as Hf02, ZrO2, Al203 or TiO2
Abstract:
A display apparatus comprises a first substrate having a front-facing surface and a rear-facing surface. The display apparatus further comprises a second substrate in front of the front-facing surface of the first surface, a reflective aperture layer including a plurality of apertures disposed on the front-facing surface of the first substrate and a plurality of MEMS light modulators for modulating light directed towards the plurality of apertures to form an image.
Abstract:
In a method of manufacturing a capacitive electromechanical transducer, a first electrode (8) is formed on a substrate (4), an insulating layer (9) which has an opening (6) leading to the first electrode is formed on the first electrode (8), and a sacrificial layer is formed on the insulating layer. A membrane (3) having a second electrode (1) is formed on the sacrificial layer, and an aperture is provided as an etchant inlet in the membrane. The sacrificial layer is etched to form a cavity (10), and then the aperture serving as an etchant inlet is sealed. The etching is executed by electrolytic etching in which a current is caused to flow between the first electrode (8) and an externally placed counter electrode through the opening (6) and the aperture of the membrane.
Abstract:
The invention relates to MEMS-based display devices. In particular, the display devices may include actuators having two mechanically compliant electrodes. In addition, bi-stable shutter assemblies and means for supporting shutters in shutter assemblies are disclosed inclusion in the display devices.