Abstract:
The present invention pertains to a carbon membrane for fluid separation; i.e., a fiber-form carbon membrane for fluid separation, in which adhesion between membranes is inhibited and clogging tends not to occur when a gas mixture containing water vapor is separated, wherein protrusions having a height difference of at least 1 µm are formed on the fiber surface. The present invention also pertains to a carbon membrane module for fluid separation that includes the fibrous carbon membrane for fluid separation.
Abstract:
In one aspect, the invention relates to a method of synthesizing a nannoparticle/porous graphene composite, including dispersing porous graphene structures into a solvent to form a dispersion of the porous graphene structures therein, adding precursors of nanoparticles into the dispersion of the porous graphene structures in the solvent to form a precursor mixture, and treating the precursor mixture to form a nannoparticle/porous graphene composite. The composite is formed such that the nanoparticles are uniformly distributed in pores of the graphene structures. The composite is very useful as electrode materials in electrochemical devices, in which efficient ions and electron transports are required.
Abstract:
A composite polycrystal contains polycrystalline diamond formed of diamond grains that are directly bonded mutually, and compressed graphite dispersed in the polycrystalline diamond.
Abstract:
A method of producing graphene sheets and plates from graphitic material including (a) mixing graphitic material particles in a liquid medium to form a suspension; (b) compressing the suspension; (c) directing the compressed suspension through a local constriction into an area of reduced pressure to decompress the suspension in less than 2×10−6 second to a pressure less than 20% of the compression pressure, thereby exfoliating graphene sheets and plates from the graphitic material.
Abstract:
The present invention provides a series of new and useful synthetic carbon allotropes. The carbon allotropes contain at least two inner hexagonal rings of 6 carbon atoms, which are characterized by hybridized sp2 bonds, as commonly found in graphene structure. The inner hexagonal rings are located in a central position within the carbon allotropes and bonded to each other in various configurations. Surrounding the hexagonal rings are additional carbon atoms, characterized by sp3 hybridized bonding, found in diamond, and more specifically in hexagonal diamond, also known as Lonsdaleite. These surrounding Lonsdaleite structures are bonded to and surround the inner hexagonal rings and support them in a central position within the carbon allotropes.
Abstract:
Structures based on graphene-related materials, methods for their preparation, and methods for their use are disclosed. These structures can be utilized for manipulating the cell transmembrane potential in various biomedical applications.
Abstract:
A new carbon allotrope is disclosed comprising an inner ring of 6 carbon atoms, which are characterized by hybridized sp2 bonds, as commonly found in graphite structure. Adamene further contains an outer ring of 12 outer carbon atoms which surround and are disposed in the same plane as the inner 6 carbon ring. The 12 carbons existing in the outer ring are characterized by sp3 hybridization, as seen in a diamond structure. The carbon allotrope additionally contains a ring of 12 carbon atoms disposed above or below the plane of the inner 6 carbon ring. These additional 12 carbons are characterized by sp3 hybridized bonding, found in diamond, and more specifically in hexagonal diamond, also known as Lonsdaleite.
Abstract:
The present invention relates to a method for preparing graphene which comprises subjecting expanded graphite to high speed homogenization to prepare a feed solution and then subjecting the same to high pressure homogenization, thereby increasing the degree of dispersion of expanded graphite in the feed solution and so improving the efficiency of high pressure homogenization. Therefore, the present method has features that the efficiency of graphene preparation is excellent and the size of graphene to be prepared is uniform, compared with a conventional process.
Abstract:
The present invention concerns a method for obtaining polyaniline/reduced graphene oxide composites comprising the steps of dispersing the graphene oxide in an acid aqueous solution containing an emulsifying agent to obtain a graphene oxide dispersion; dissolving one or more aniline oligomers in an organic solvent to obtain an oligomer solution; mixing the oligomer solution with the graphene oxide dispersion, said oligomer being added in a stoichiometric excess compared to the quantity required to complete the graphene oxide reduction; adding to the suspension of the polyaniline/reduced graphene oxide composite an oxidizing agent in a stoichiometric quantity compared to said excess of oligomer so as to oxidize the excess of said oligomer to obtain a suspension of the polyaniline/reduced graphene oxide composite.
Abstract:
According to the present invention, there are provided processes for preparing a porous composite material comprising a metal and a two-dimensional nanomaterial. In one aspect, the processes comprise the steps of: providing a powder comprising metal particles; heating the powder such that the metal particles fuse to form a porous scaffold; and forming a two-dimensional nanomaterial on a surface of the porous scaffold by chemical vapour deposition (CVD). Also provided are materials obtainable by the present processes, and products comprising said materials.