摘要:
A transistor comprises a semiconductor substrate and a barrier metal layer forming a Schottky barrier. One or more insulated gates may be positioned adjacent to an edge of the Schottky barrier. By applying a reverse bias voltage between the semiconductor substrate and the barrier metal, and applying a gate voltage between the one or more insulated gates and the barrier metal, a reverse bias current may be increased to a reverse bias conducting state. When the gate voltage is sufficient, the transistor may conduct current between the semiconductor substrate and the barrier metal. For example, voltages may be applied to an n-type substrate and an insulated gate (both relative to the barrier metal), and a current may flow from the semiconductor substrate to the barrier metal. The transistor may operate as a switch, a filter, a rectifier, an oscillator, or an amplifier.
摘要:
A rectifier building block has four electrodes: source, drain, gate and probe. The main current flows between the source and drain electrodes. The gate voltage controls the conductivity of a narrow channel under a MOS gate and can switch the RBB between OFF and ON states. Used in pairs, the RBB can be configured as a three terminal half-bridge rectifier which exhibits better than ideal diode performance, similar to synchronous rectifiers but without the need for control circuits. N-type and P-type pairs can be configured as a full bridge rectifier. Other combinations are possible to create a variety of devices.
摘要:
A design structure is provided for spacer fill structures and, more particularly, spacer fill structures, a method of manufacturing and a design structure for reducing device variation is provided. The structure includes a plurality of dummy fill shapes in different areas of a device which are configured such that gate perimeter to gate area ratio will result in a total perimeter density being uniform across a chip.
摘要:
A semiconductor fabrication method comprises steps of providing a semiconductor structure. The semiconductor structure includes a semiconductor substrate, a trench in the semiconductor substrate. The trench comprises a side wall which includes {100} side wall surfaces and {110} side wall surfaces. The semiconductor structure further includes a blocking layer on the {100} side wall surfaces and the {110} side wall surfaces. The method further comprises the steps of removing portions of the blocking layer on the {110} side wall surfaces without removing portions of the blocking layer on the {100} side wall surfaces such that the {110} side wall surfaces are exposed to a surrounding ambient.