Abstract:
According to a three-dimensional image capture system (30) of the invention, it includes a three- dimensional measuring device (4) that is placed on a room-structure object of a room in which a patient support table (3) is placed and performs image-capturing of a patient (45) to thereby generate three-dimensional- image data, and a three-dimensional-image processing device (6) that generates from the three-dimensional-image data, a three-dimensional image (26) associated with a reference coordinate system with reference to the top board (1) or a floor (9) of the room, and that displays the three- dimensional image (26). The three-dimensional-image processing device (6) includes a position- information extraction unit (73) that takes a correlation between the reference coordinate system and three-dimensional position information of the patient (45) in the three-dimensional-image data to thereby generate reference-coordinate-system position information of the patient (45) based on the reference coordinate system, and a display unit (72) that displays the three-dimensional image (26), wherein the display unit (72) displays two three-dimensional images (26) captured at different timings.
Abstract:
A method comprises displaying an image of a patient anatomy for guiding a medical instrument to a deployment location during a medical procedure. The method further comprises recording a first sample identifier for a first tissue sample. The method also comprises receiving first tissue sample pathology information about the first tissue sample. The method also comprises displaying the first sample identifier with the first tissue sample pathology information during the medical procedure.
Abstract:
A medical instrument assembly including a handle assembly having a first handle portion and a second handle portion proximate the second end, wherein the second handle portion is slidably engaged with the first handle portion. A first localization element is attached to the first handle portion and a second localization element is attached to the second handle portion. A medical instrument is mechanically coupled to the second handle portion and a translation of the second handle portion with respect to the first handle portion causes a coincident and coextensive translation of the medical instrument. The amount of translation of the medical instrument is adapted to be determined by calculating the distance between the first localization element and the second localization element. The first and second localization elements may be electromagnetic sensors which positions may be determined by a navigation system.
Abstract:
Devices and methods for assessing tissue contact based on dielectric properties and/or impedance sensing are disclosed. In some embodiments, one or more probing frequencies are delivered via electrodes including an electrode in proximity to a tissue (for example, myocardial tissue). In some embodiments, dielectric parameter values, optionally together with other known and/or estimated tissue characteristics, are measured to determine a contact quality with the tissue. In some embodiments, dielectric contact quality is used, for example, in guiding the formation of a lesion (for example, RF ablation of heart tissue to alter electrical transmission characteristics).
Abstract:
A method and system for providing control that include providing a workpiece that includes a target shape, providing a cutting tool, providing a 3-D image associated with the workpiece, identifying the target shape within the workpiece image, providing a 3-D image associated with the cutting tool, registering the workpiece with the workpiece image, registering the cutting tool with the cutting tool image, tracking at least one of the workpiece and the cutting tool, transforming the tracking data based on image coordinates to determine a relationship between the workpiece and the cutting tool, and, based on the relationship, providing a control to the cutting tool. In one embodiment, the workpiece image can be represented as volume pixels (voxels) that can be classified and/or reclassified based on target shape, waste, and/or workpiece.
Abstract:
A surgical device includes a console having a visual display and a manipulator arm, a robotic device having a camera and a connection component. The robotic device is configured to be positioned completely within a body cavity. The camera is configured to transmit visual images to the visual display. The connection component operably couples the console and the robotic device. The manipulator arm is positioned relative to the visual display so as to appear to be penetrating the visual display.
Abstract:
An end effector of a surgical tool may include a housing, a jaw support shaft, jaw members, an articulation member, and cam pulleys. The jaw members may be supported on the support shaft and may be pivotable about a pivot axis. The articulation member may have a slot and include articulation pins extending from it that are coupled to the jaw members. The slot may be adapted to receive the jaw support shaft to support the articulation member between the jaw members. The articulation member may be rotatable about the jaw support shaft to articulate the jaw members relative to the longitudinal axis. The cam pulleys may be mounted to the housing and coupled to the jaw members. The cam pulleys may be rotatable about the pivot axis to pivot the pair of jaw members between open and closed conditions.
Abstract:
A teleoperational assembly is disclosed which includes an operator control system and a plurality of manipulators configured to control the movement of medical instruments in a surgical environment. The manipulators are teleoperationally controlled by the operator control system. The system further includes a processing unit configured to display an image of a field of view of the surgical environment, determine association information about the manipulators and the operator control system, and display badges near the medical instruments in the image of the field of view of the surgical environment. The badges display the association information for the medical instrument they appear associated with.
Abstract:
A surgical guidance system is disclosed that allows for real-time imaging and patient monitoring during a surgical procedure. The system can include an MRI system for generating real-time images of the patient while surgery is being performed. Prior to surgery, a surgical plan can be created using a planning interface. A control unit receives the real-time image data and the surgical plan, and monitors the image data based on parameters included in the surgical plan. The control-unit monitoring occurs in real-time while the surgical procedure is being performed. The control unit can detect deviations from the surgical plan and/or high-risk patient conditions and instruct an alert unit to issue an alert based on the detected conditions.
Abstract:
The invention relates to a device (1) for positioning a marker (2) in a 3D ultrasonic image volume (3), a system for positioning a marker (2) in a 3D ultrasonic image volume (3), a method for positioning a marker (2) in a 3D ultrasonic image volume (3), a computer program element for controlling such device (1) for performing such method and a computer readable medium having stored such computer program element. The device (1) comprises an image provision unit (11), a marker unit (12) and a display unit (13). The image provision unit (11) is configured to provide a 3D ultrasonic image volume (3) showing an object (4). The marker unit (12) is configured to position a marker (2) in the 3D ultrasonic image volume (3). The display unit (13) is configured to display the 3D ultrasonic image volume (3) and the marker (2) in a first imaging view (31) in a first imaging plane and in a second imaging view (32) in a second, different imaging plane. The positioning of the marker (2) is limited to be on a projection line (5). The first and the second imaging views are rotated relative to each other, so that the projection line (5) has a first angle relative to the first imaging plane and a second, different angle relative to the second imaging plane.