Abstract:
An adjustable mount for an optical device in a laser spectroscopy system is provided. The adjustable mount includes body configured to mount to a process and a reflector mount having a feature configured to mount an optical device. An interface between the body and the reflector mount allows relative motion between the reflector mount and the body. At least one alignment device is configured to engage the reflector mount and the body to fix a position of the reflector mount relative to the body. An optical device is removably mounted to the reflector mount independent of the alignment device and is sealed to the reflector mount.
Abstract:
An alignment device having two angular degrees of freedom is provided. The alignment device is adjustable such that it is suitable for aligning a first apparatus with respect to a second apparatus. The first apparatus may emit one or more of electromagnetic waves, acoustic waves and matter towards the second apparatus and for detection by the second apparatus. The first and second apparatuses may be disposed in a harsh environment such as is found in the vicinity of an industrial process stack. In some embodiments the first apparatus is a laser, preferably a tunable diode laser, and the second apparatus is a receiver incorporating a detector. In these embodiments the apparatuses may be used to perform laser absorption spectroscopy on a process gas flowing through an industrial process stack.
Abstract:
Provided is an analysis target region setting apparatus that can accurately set an analysis target region, based on an observation image of a sample obtained with an optical microscope and the like irrespective of texture on the sample surface when the analysis target region is set therein. The analysis target region setting apparatus according to the present invention divides the observation image into a plurality of sub-regions based on pixel information on each pixel constituting the observation image. Subsequently, consolidation information on each sub-region is calculated, and two adjacent sub-regions themselves are consolidated based on the consolidation information. According to this, it is possible to divide the observation image into sub-regions having similar pixel information with a disregard of noise attributed to the shape of a surface and the like. A user designates one sub-region from among the sub-regions finally obtained, as the analysis target region.
Abstract:
A method of identifying an underwater material in an underwater scene comprises analysing a specimen of a material extracted from a body of water using a hyperspectral imager (58) to determine a hyperspectral profile of the material. The hyperspectral profile is stored. An image is taken of an underwater scene in a body of water (22) using the hyperspectral imager (58) or a further hyperspectral imager. An observed hyperspectral profile is generated from the scene. The observed hyperspectral profile is compared with the stored hyperspectral profile to identify the material in the underwater scene. A positive identification is recorded when the comparison is sufficiently close.
Abstract:
A probe head for a diagnostic instrument using Raman spectroscopy for tissue measurements, the probe head comprising; a transmission optical fiber, a plurality of collection optical fibers, and a lens to transmit light from the transmission optical fiber to a test site, wherein the ends of the collection optical fibers are beveled or angled. The beveled surfaces can face towards or away from the end of the transmission fiber. Optical elements are used to gather and filter light scattered from tissue, and analysed to identify abnormal tissue.
Abstract:
Techniques related to printing are described herein. According to an example, color patches are to be printed on a substrate. The substrate can be positioned on a substrate support for operation of a color sensor in a color measurement zone. Dimension and location in the substrate of the color patches are selected such that, for each color patch, at least a portion of the color patch can be positioned on a support projection in the color measurement zone. In some examples, color analysis techniques are described.
Abstract:
Ein speziell für Messungen an gekrümmten Oberflächen konzipiertes Handfarbmessgerät umfasst ein eine Messanordnung beherbergendes Gehäuse (G) mit einem Gehäuseboden (5) und einer darin angeordneten Messöffnung (6), durch welche hindurch die Beleuchtung eines Messflecks auf der Oberfläche eines Messobjekts und das Aufpicken des vom Messfleck zurückgestrahlten Messlichts erfolgt. Die Messanordnung umfasst eine Beleuchtungsanordnung zur Beaufschlagung des Messflecks mit Beleuchtungslicht in mindestens einer Beleuchtungsrichtung und eine Aufpickanordnung zur Erfassung des Messlichts in mindestens einer Beobachtungsrichtung. Am Gehäuseboden (5) ist eine Mehrpunktauflage mit mindestens drei stiftförmigen Stützorganen (51, 52, 53) angeordnet. Zwei Stützorgane (51, 52) liegen symmetrisch zu beiden Seiten der Messöffnung (6), wobei ihre Verbindungslinie parallel zu und in unmittelbarer Nähe einer Beleuchtungs-Beobachtungs-Ebene verläuft, welche durch die Beuchtungs- und Beobachtungsrichtungen definiert ist. Das dritte Stützorgan (53) liegt querab im Abstand zu den beiden anderen Stützorganen (51, 52).