摘要:
According to one aspect, the present invention provides implantable or insertable medical devices that comprise a conductive substrate and an electrodeposited coating over the substrate. The electrodeposited coating includes (a) one or more types of inorganic materials, (b) one or more types of polymeric materials and (c) optionally, one or more types of therapeutic agents. Still other aspects of the invention concern methods of making and using such devices.
摘要:
Die Erfindung betrifft ein Implantat aus einem biokorrodicrbarcn metallischen Werkstoff mit einer passivierenden Beschichtung aus einer nanopartikel-haltigen Silanbeschichtung sowie ein dazugehöriges Verfahren zur Herstellung des Implantats. Das Verfahren umfasst dazu die Schritte: (i) Bereitstellen eines Rohlings für das Implantat bestehend aus dem biokorrodierbaren metallischen Werkstoff; und (ii) Beschichten des Rohlings mit einer homogen-kolloidalen Lösung aus A) einem oder mehreren Bis-Silanen der Formel (1):
(RO) 3 -Si-X-Si(OR) 3 (1)
wobei R einzeln ausgewählt für C 1 -C 10 -Alkyl oder C 2 -C 10 -Acyl steht; und X eine substituierte oder unsubstituierte C 1 -C 20 -Alkandiylgruppe oder eine substituierte oder unsubstituierte C 1 -C 20 -Heteroalkandiylgruppe mit 1 bis 5 Heteroatomen ausgewählt aus der Gruppe O, N und S ist; und B) Siliziumdioxid-Nanopartikeln mit einem mittleren Partikeldurchmesser im Bereich von 10 nm bis 1 µm
in Wasser, Ethanol oder einem Gemisch derselben, wobei die Lösung 1 bis 20 Vol.% Bis-Silan enthält und die Konzentration der Siliziumdioxid-Nanopartikel in der Lösung im Bereich von 1 bis 100 ppm liegt.
摘要:
A medical device having a biodegradable coating comprising an inorganic material complexed to macromolecules. Biodegradation of the biodegradable coating releases nanoparticles of the inorganic material with macromolecules complexed to the released nanoparticles. The inorganic material may be applied directly onto the medical device as a nanostructured coating or be dispersed within or under a layer of biodegradable polymer. The medical device body may comprise a biodegradable metallic material. Also provided is a method of delivering macromolecules to body tissue using the medical device of the present invention.
摘要:
The present invention discloses novel polymer-ceramic matrix composites and processes for making same. The composites can be used in biomedical applications, in particular, coatings of implants and other medical devices, where both the ceramic phase and the polymer phase are bio-compatible. The composites combine a reinforcing polymer phase with a continuous ceramic matrix to create materials with properties that are new and superior to polymer or ceramic phases alone. The composites can incorporate a bioactive agent.
摘要:
The present invention is directed to a stabilized cross-linked hydrogel matrix comprising a first high molecular weight component and a second high molecular weight component that are covalently linked, and at least one stabilizing or enhancing agent, wherein the first high molecular weight component and the second high molecular weight component are each selected from the group consisting of polyglycans and polypeptides. This stabilized hydrogel matrix may be prepared as bioactive gels, pastes, slurries, cell attachment scaffolds for implantable medical devices, and casting or binding materials suitable for the construction of medical devices. The intrinsic bioactivity of the hydrogel matrix makes it useful as a gel or paste in multiple applications, including as a cell attachment scaffold that promotes wound healing around an implanted device, as gels and pastes for induction of localized vasculogenesis, wound healing, tissue repair, and regeneration, as a wound adhesive, and for tissue bulking.
摘要:
The present invention is directed to a medical device, such as a stent, having a coating comprising a release component and an insoluble fibrous component. The release component is capable of being degraded thus leaving a gap between the stent and the insoluble fibrous component. Further, the insoluble fibrous component is capable of being wrapped about the stent, and capable of moving substantially freely about the stent upon degradation of the release component. This capacity enables the insoluble fibrous component to form a reinforced thrombus plug in, for instance, an aneurysm or fistula.
摘要:
A bioresorbable material is disclosed having a ceramic (22) and polymer (23) coating. The ceramic and polymer coating increases the tailorability of resorption rates ad properties and increases design flexibility by virtue of its simplicity.
摘要:
Methods for making collagen based biocomposite constructs and related devices include: (a) winding at least one collagen fiber a number of revolutions about a length of a support member having a long axis, the winding having at least one defined pitch and/or fiber angle relative to the long axis of the support member to form an elongate construct; and (b) applying a fluid polymeric material, such as, for example, an acrylate emulsion and/or other thermoplastic material, onto the collagen fiber during the winding step. Optionally, the fluid polymeric material can include antibiotics and/or other therapeutic agents for additional function/utility.
摘要:
Two-dimensional materials can be formed into enclosures for various substances and a substrate layer can be provided on an outside and/or on an inside of the enclosure, wherein the enclosure is not cytotoxic. The enclosures can be exposed to an environment, such as a biological environment (in vivo or in vitro), where the fibrous layer can promote vascular ingrowth. One or more substances within the enclosure can be released into the environment, one or more selected substances from the environment can enter the enclosure, one or more selected substances from the environment can be prevented from entering the enclosure, one or more selected substances can be retained within the enclosure, or combinations thereof. The enclosure can, for example, allow a sense-response paradigm to be realized. The enclosure can, for example, provide immunoisolation for materials, such as living cells, retained therein.