Abstract:
Ein Handfarbmessgerät umfasst ein Gehäuse mit einer opto-elektronischen Messeinheit. Diese umfasst eine Optikanordnung zum Empfangen von Messlicht und eine vom Messlicht beaufschlagte Sensoranordnung, welche das Messlicht in elektrische Messsignale umwandelt und diese zu digitalen Messdaten verarbeitet. Die Messeinheit (M) besteht aus einer asphärischen Eingangslinse (L 1 ), einer Blende (B) zur Begrenzung des Einfallswinkelbereichs, einem depolarisierenden Diffusor (D), einer Sensor-Linse (L 2 ) und mindestens drei durch Farbfilter (F 1 , F 2 , F 3 ) auf unterschiedliche spektrale Empfindlichkeiten sensibilisierte Sensoren (S 1 , S 2 , S 3 ). Die Blende (B) liegt im Wesentlichen in der Brennebene der Eingangslinse (L 1 ), der Diffusor (D) ist in unmittelbarer Nähe der Blende (B) und in der Brennebene der Sensor-Linse (L 2 ) angeordnet. Die Filter (F 1 , F 2 , F 3 ) und die Sensoren (S 1 , S 2 , S 3 ) sind nahe der optischen Achse (A) angeordnet und werden mit im Wesentlichen parallelem Messlicht beaufschlagt. Die Filter (F 1 , F 2 , F 3 ) sind auf die spektralen Charakteristiken der Color Matching Functions des Standard-Beobachters nach CIE 1931 ausgelegt. Für Umgebungslichtmessungen kann ein zusätzlicher Diffusor (D E ) der Eingangslinse vorgesetzt werden.
Abstract:
Disclosed are methods useful for providing information useful in the diagnosis of gastrointestinal abnormalities as well as ingestible devices useful for providing information useful in the diagnosis of gastrointestinal abnormalities.
Abstract:
An incoherent radiation emitter/detector is disclosed, comprising: a narrow band device having an emitter/detector surface, the emitter/detector surface characterized by a plurality of geometric features thereon having a size, shape, and distribution definitive of the narrow band, the narrow band having a spectral bandwidth less than a corresponding ideal black body spectral bandwidth.
Abstract:
A spectrophotometric instrument is comprised of a processor, a probe (402) having a tissue engaging surface (404) with an aperture (422) therethrough and a light source producing measurement light signals and optically coupled to the probe via a first optical path (420). A partially reflective first reflecting member (430) is located in the probe and has a generally elliptical profile positioned to reflect a first portion of the measurement light signals to the tissue aperture and to transmit a second portion of the measurement light signals through the first reflecting member. A second reflecting member (456) is located in the probe and has a generally elliptical profile positioned to reflect the measurement light signals transmitted through the first reflecting member. A second optical path (428) has a distal end positioned in the probe to receive to receive light signals transmitted through the tissue sample and a proximal end coupled to the processor.
Abstract:
The invention relates to an arrangement for continuous determination of a substance comprising a chemically reacting sensor element (21) arranged in or adjacent to a limiting wall of a volume (22) containing the substance, where in a housing (2) of a modular device (1) optical elements to read the sensor element (21) are arranged, comprising at least one light source (35) illuminating the sensor element (21) and at least one sample detector (29) detecting the light scattered by the sensor element (21), and where a front side of the housing (2) comprises a coupling for the sensor element (21), so that the sensor element (21) may be interchangeably and modularly coupled to the front side of the housing (2). A glass body (24) is arranged adjacent to the coupling for direct contact with the sensor element (21) and separate conduits (34, 31) for the illuminating and for the scattered light are arranged rearward of the glass body (24). The modular device (1) allows for easily interchanging the modular sensor element (21) and provides an optical connection between the sensor element (21) and the detector (29) which is steady and allows for high quality measurements.
Abstract:
A curved mirrored surface (78) is used to collect radiation scattered by a sample surface (76a) and originating from a normal illumination beam (70) and an oblique illumination beam (90). The collected radiation is focused to a detector (80). Scattered radiation originating from the normal and oblique illumination beams may be distinguished by employing radiation at two different wavelengths, by intentionally introducing an offset between the spots illuminated by the two beams or by switching the normal and oblique illumination beams (70, 90) on and off alternately. Beam position error caused by change in sample height may be corrected by detecting specular reflection of an oblique illumination beam and changing the direction of illumination in response thereto. Butterfly-shaped spatial filters may be used in conjunction with curved mirror radiation collectors 78 to restrict detection to certain azimuthal angles.
Abstract:
Ein für Einbauzwecke bestimmtes Spektralfotometer umfasst einen Messkopf mit einer mindestens eine Lichtquelle (11) aufweisenden Beleuchtungsanordnung (10) zur Beleuchtung eines in einer Messebene (M) befindlichen Messobjekts unter einem Einfallswinkel von im wesentlichen 45°, mit einer Aufpickanordnung (20) zum Auffangen des vom Messobjekt remittierten Messlichts unter einem Ausfallswinkel von im wesentlichen 0° relativ zum Lot auf die Messebene, mit einer einen Eintrittsspalt (31) aufweisenden Spektrometeranordnung (30) zur spektralen Aufspaltung des aufgefangenen und ihr durch den Eintrittsspalt zugeführten Messlichts und mit einer vom spektral aufgespaltenen Messlicht beaufschlagten fotoelektrischen Empfängeranordnung (32) zur Umwandlung der einzelnen Spektralanteile des Messlichts in entsprechende elektrische Signale. Ferner umfasst es eine elektronische Schaltung (100), welche die Lichtquelle (11) steuert und aus den von der fotoelektrischen Empfängeranordnung erzeugten elektrischen Signalen digitale Messwerte erzeugt. Die Lichtquelle (11) ist als flacher Cosinus-Strahler ausgebildet und so angeordnet, dass ihre Hauptstrahlungsrichtung im wesentlichen parallel zum Hauptstrahl (21) des remittierten Messlichts verläuft und der Mittenabstand der Lichtquelle vom Hauptstrahl des remittierten Messlichts im wesentlichen gleich gross ist wie der Abstand der Lichtquelle (11) von der Messebene (M). Die Lichtquelle (11) umfasst eine Kombination von zwei oder mehreren in einer Ebene und vorzugsweise auf einem gemeinsamen Träger angeordneten Leuchtdioden unterschiedlicher spektraler Charakteristiken, wobei die Ebene im wesentlichen parallel zur Messebene (M) ausgerichtet ist. Die Spektrometeranordnung (30) weist ein topfförmiges Spektrometergehäuse (34) aus Kunststoff mit einem im wesentlichen zylindrischen Mantel (34a) und einem abnehmbaren Deckel (34b) auf. Im Spektrometergehäuse ist ein konkaves Beugungsgitter (35) koaxial zum Mantel angeordnet und liegt auf einer am Mantel ausgebildeten und vorzugsweise komplementär zum Beugungsgitter geformten Ringschulter (34c) auf. Der Deckel (34b) presst das Beugungsgitter (35) über eine Druckfeder (36) mit definierter Kraft gegen die Ringschulter (34c). Das Spektrometergehäuse (34) ist mit seiner dem Deckel (34b) gegenüberliegenden Seite auf einer den Eintrittsspalt (31) und die fotoelektrische Empfängeranordnung (32) enthaltenden Printplatte (33) positioniert und durch eine Spannfeder (37) an der Printplatte fixiert. Die Aufpickanordnung (20) ist direkt an der dem Spektrometergehäuse (34) gegenüberliegenden Seite der Printplatte (33) montiert.
Abstract:
A blackbody radiation device (110) includes a planar filament emission element (102) and a planar detector (104) for respectively producing and detecting radiation having width d1/1 less than about 0.1 to test a sample gas, where 1 is the wavelength of the radiation; a reflector (108); a window (W); an electrical control (118); and a data output element (116).
Abstract:
A curved mirrored surface (78) is used to collect radiation scattered by a sample surface (76a) and originating from a normal illumination beam (70) and an oblique illumination beam (90). The collected radiation is focused to a detector (80). Scattered radiation originating from the normal and oblique illumination beams may be distinguished by employing radiation at two different wavelengths, by intentionally introducing an offset between the spots illuminated by the two beams or by switching the normal and oblique illumination beams (70, 90) on and off alternately. Beam position error caused by change in sample height may be corrected by detecting specular reflection of an oblique illumination beam and changing the direction of illumination in response thereto. Butterfly-shaped spatial filters may be used in conjunction with curved mirror radiation collectors (78) to restrict detection to certain azimuthal angles.