摘要:
A present method of manufacturing a silicon-based thin-film photoelectric conversion device is characterized in that a double pin structure stack body (30) is formed by successively forming, in an identical plasma CVD film deposition chamber, a first p-type semiconductor layer (11), an i-type amorphous silicon-based photoelectric conversion layer (12), a first n-type semiconductor layer (13), a second p-type semiconductor layer (21), an i-type microcrystalline silicon-based photoelectric conversion layer (22), and a second n-type semiconductor layer (23) on a transparent conductive film (2) formed on a substrate (1), and the first p-type semiconductor layer (11), the i-type amorphous silicon-based photoelectric conversion layer (12) and the first n-type semiconductor layer (13) are formed under such conditions that a film deposition pressure in the plasma CVD film deposition chamber is not lower than 200Pa and not higher than 3000Pa and power density per unit electrode area is not lower than 0.01W/cm 2 and not higher than 0.3 W/cm 2 . Thus, the silicon-based thin-film photoelectric conversion device attaining excellent quality and high photoelectric conversion efficiency can be manufactured at-low cost and high efficiency using a simplified manufacturing apparatus.
摘要翻译:一种制造硅基薄膜光电转换装置的本发明的方法是dadurch gekennzeichnet,DASS一个双pin结构堆叠体(30)是由依次形成,在同一等离子体CVD膜沉积室,一个第一p型半导体层而形成 (11),i型微晶硅基光电的i型非晶硅基光电转换层(12),第一n型半导体层(13),第二p型半导体层(21) 转换层(22),和在透明导电膜的第二n型半导体层(23)(2)形成的基板(1),并且所述第一p型半导体层(11),所述i型非晶硅上 硅基光电转换层(12)和所述第一n型半导体层(13)调查的条件下形成的确在等离子体CVD膜沉积室中的膜沉积压力不大于为200Pa大于3000Pa的和功率密度下和不高于 单位电极面积不洛韦 r除0.01W / cm 2并且不高于0.3W / cm 2以下。 因此,获得优异的质量和高光电转换效率的硅基薄膜光电转换装置可以以低成本和高效率使用,简化的制造设备来制造。
摘要:
A method of manufacturing polysilicon film comprises the steps of forming amorphous silicon film (33) on a glass substrate (31), the silicon film including a first area (33a) and a second area (33b) in contact with the first area (33b); irradiating the first area (33a) of the amorphous silicon film (33) with laser (35) having a wavelength of 390 nm to 640 nm to form a first polycrystalline area (34a); and irradiating the second area (33b) of the amorphous silicon film (33) and part of the first polycrystalline area (34a) in contact with the second area (33b) with laser (35) having a wavelength of 390 nm to 640 nm to form a second polycrystalline area (34b) in contact with the first polycrystalline area (34a).
摘要:
Die Erfindung betrifft eine Vorrichtung zur plasmagestützten chemischen Oberflächenmodifizierung von Substraten im Vakuum. Dabei können mindestens eine Schicht auf eine Oberfläche von Substraten ausgebildet aber auch ein Abtrag von einer solchen Oberfläche vorgenommen werden. Es ist dabei Aufgabe der Erfindung eine Möglichkeit zu schaffen, um günstigere elektrische Verhältnisse bei der Modifizierung von Substratoberflächen im Vakuum durch einen verbesserten elektrischen Stromfluss, zu erreichen. Bei der erfindungsgemäßen Vorrichtung sind innerhalb einer Vakuumkammer ein Substrat auf einem aus einem elektrisch leitenden Werkstoff gebildeten Substratträger sowie zumindest ein Teil einer Elektrodeneinheit angeordnet. Die Elektrodeneinheit ist parallel zur zu modifizierenden Oberfläche des Substrates ausgerichtet und an eine HF/VHF-Spannungsquelle elektrisch leitend angeschlossen. Außerdem soll über die Elektrodeneinheit ein Reaktionsgas zur Plasmabildung und Oberflächenmodifizierung in einen zwischen Elektrodeneinheit und Substrat angeordneten Plasmareaktionsraum eingeführt werden. Der Plasmareaktionsraum ist von einer elektrischen Abschirmung an seinem radial äußeren Rand umschlossen, an Erdpotential angeschlossen und elektrisch leitend über die Elektrodeneinheit mit der HF/VHF-Spannungsquelle verbunden. Außerdem ist ein Kontaktrahmen vorhanden, der elektrisch leitend mit der Abschirmung verbunden ist. Der Kontaktrahmen kann dabei bewegt werden. Durch eine Bewegung des Kontaktrahmens in Richtung auf Substrat und Substratträger kann beim Betrieb der Vorrichtung eine elektrische leitende Verbindung von Kontaktrahmen und Substratträger hergestellt werden.
摘要:
Chemical vapor deposition methods use trisilane and a halogen-containing etchant source (such as chlorine) to selectively deposit Si-containing films over selected regions of mixed substrates. Dopant sources may be intermixed with the trisilane and the etchant source to selectively deposit doped Si-containing films. The selective deposition methods are useful in a variety of applications, such as semiconductor manufacturing.
摘要:
The invention relates to a method for production of a reactor (12) for the decomposition of a silicon-containing gas (7), comprising the following steps: production of an essentially tubular reactor blank (2), comprising an inner wall (3) and an outer wall (4), application of a separating layer (11), comprising a powder separating agent at least to the inner wall (3) of the reactor blank (2). The reactor (12), provided with a separating layer (11), provides a simple and effective protection of the inner wall (3) from precipitating silicon powder. The separating layer (11) and the silicon powder deposited thereon can easily be removed mechanically without damaging the inner wall (3).
摘要:
The production of bulk polysilicon by a chemical vapor deposition process on a tube section. A quartz envelope (31) and a base plate (34) form a CVD reactor enclosure, with external radiant heaters (33) providing heat through the wall of the reactor, and with gas inlet (35) and outlet (36) ports located in base plate (34). A tube section (32), preferably an EFG silicon tube section, vertically emplaced on base plate (34) and capped (43) to close the top is used as the reaction chamber. Deposition occurs on the inside surface of the chamber tube (32), the inner diameter of the deposit layer becoming increasingly smaller as the yield accumulates. In a two tube reactor, vertical middle tube (46) is supported inside the chamber tube for full flow of process gas over and under the middle tube (46) so that deposition occurs on the three exposed tube surfaces.
摘要:
In a vapor phase growth apparatus for performing a vapor phase growth of a silicon epitaxial layer on a main surface of a silicon single crystal substrate while heating the silicon single crystal substrate placed on a pocket formed on a susceptor, from both sides, the pocket has an outer peripheral side part which supports a rear surface of the silicon single crystal substrate and an inner peripheral side part which is kept in a state of being more recessed than the outer peripheral side part in the inside of the outer peripheral side part, and the susceptor has a warped inverted U-shaped longitudinal sectional shape.
摘要:
A silicon steel sheet having low iron loss of high frequency has a surface layer of the steel sheet which has Si concentration higher than Si concentration of a center portion of the steel sheet. Si concentration of sheet thickness center is 3.4 wt. % or more and Si concentration of the surface layer of the steel sheet is 5 wt. % or more. Si concentration in a surface layer portion is 5 to 8 wt. %. The production method comprises siliconizing treatment and diffusing treatment. Velocity of siliconizing and diffusing are controlled, and Si concentration distribution in the sheet thickness direction of the steel sheet is controlled.
摘要:
The inventive method for depositing silicon onto a substrate firstly involves the introduction of a reactive silicon-containing gas and hydrogen into the plasma chamber and then the initiation of the plasma. After initiating the plasma, only reactive silicon-containing gas or a gas mixture containing hydrogen is supplied to the plasma chamber in an alternatively continuous manner, and the gas mixture located inside the chamber is, at least in part, simultaneously withdrawn from the chamber. From the start, homogeneous microcrystalline silicon is deposited onto the substrate in the presence of hydrogen.