摘要:
A high voltage controller configured to drive a high voltage generator. The high voltage controller includes a voltage select input and a current select input, an actual voltage input and an actual current input. First circuitry is configured to generate an alternating current (AC) drive signal. Second circuitry configured to generate a direct current (DC) drive signal. Closed loop control circuitry is configured to adjust the DC drive signal based on at least one of the voltage select and current select inputs and at least one of the actual voltage and actual current inputs. The first circuitry may include a push-pull circuit. The second circuitry may include a pulse width modulation (PWM) controller. A high voltage generator may be coupled to the AC and DC drive signals. The high voltage generator may include a high voltage transformer having a pair of primary windings and center tap. The AC drive signal may be coupled to the primary windings and the DC drive signal may be coupled to the center tap.
摘要:
The present invention relates to a method of producing a negative temperature coefficient resistor (NTCR) sensor, the method comprising the steps of: providing a mixture comprising uncalcined powder and a carrier gas in an aerosol-producing unit, with the uncalcined powder comprising metal oxide components; forming an aerosol from said mixture and said carrier gas and accelerating said aerosol in a vacuum towards a substrate arranged in a deposition chamber; forming a film of the uncalcined powder of said mixture on said substrate; and transforming the film into a layer of spinel-based material by applying a heat treatment step.
摘要:
An illumination unit for illuminating large surfaces comprises a carrier device (11), to which a plurality of light emitting diodes (13) is fastened in a two-dimensional arrangement. A plurality of separate reflector elements (17) is fastened to the carrier device between the light emitting diodes.
摘要:
A circuit for operating a light-emitting diode assembly, wherein the light-emitting diode assembly comprises a plurality of strands connected in parallel of one or more light-emitting diodes which are arranged in series and through which in the operational state a particular partial current of an operating current flowing through the light-emitting diode assembly flows, comprises a current source for providing the operating current. The circuit is designed to detect the greatest partial current and to control an operational value provided by the partial current source on the basis of said greatest partial current such that none of the partial currents exceeds a predetermined maximum current.