Abstract:
The invention relates to a method for producing butadine from n-butenens, consisting of the following steps: A) a feed gas flow (a) containing n-butenes is provided; B) the feed gas flow (a) containing n-butenes and an oxygen-containing gas is fed to at least one dehydrogenation area and is oxidatively dehydrogenated from n-butenes to form butadiene; a product gas flow (b) containing butadiene, unreacted n-butenes, water vapour, oxygen, low-boiling hydrocarbons, optionally carbon oxides and optionally inert gases is obtained; C) the product gas flow (b) is cooled and compressed in at least compression step; at least one condensate flow (c1) containing water and a gas flow (c2) containing butadiene, n-butenes, water vapour, oxygen, low-boiling hydrocarbons, optionally carbon oxides and optionally inert gases is obtained; D) non-condensable and low-boiling gas component parts containing oxygen, low-boiling hydrocarbons, optionally carbon oxides and optionally inert gases are separated from the gas flow (c2) by Da) absorbing C4-hydrocarbons containing butadiene and n-butenes in absorption means boiling at a high temperature, wherein an absorption agent flow charged with C4-hydrocarbons and the gas flow (d2) are obtained, Db) the oxygen is removed from the absorption agent flow charged with the C4-hydrocarbon by stripping with the inert gas, and Dc) the C 4 hydrocarbons are desorbed from the charged absorption agent flow and a C 4 -product gas flow (d1), which consists essentially of C 4 -hydrocarbons and has less that 100ppm oxygen, is obtained. E) the C4-product flow (d1) is separated by extractive distillation using a selected solvent for butadiene in a butadiene and the material flow (e1) containing the selective solvent and a material flow (e2) containing n-butenes; F) the butadiene and the material flow (e1) containing the selective solvent is distilled in a material flow (f1) consisting essentially of the selective solvent and a material flow (f2) containing a butadiene.
Abstract:
Process for preparing olefins, which comprises the following steps: a) preparation of a synthesis gas comprising carbon monoxide and hydrogen, b) introduction of carbon dioxide recirculated from step d) into the synthesis gas during or after the preparation of synthesis gas as per step a), c) conversion of the synthesis gas having a hydrogen to carbon monoxide ratio of @1.2:1 which is obtained in step b) into olefins in the presence of a Fischer-Tropsch catalyst, d) removal of the carbon dioxide comprised in the reaction product from step c), where the ratio of hydrogen to carbon monoxide in step c) is set via step b).
Abstract:
The invention relates to a catalyst containing from 0.1 to 20 mass % rhenium and 0.05 to 10 mass % platinum in relation to the total mass thereof. The inventive method for producing a support for said catalyst consists in a) treating a support which can be eventually pre-treated with the aid of a solution of rhenium compound, b) drying and annealing said support at a temperature ranging from 80 to 600 °C, and c) impregnating the support with a solution of platinum compound and in drying it. The inventive method for producing alcohol by catalytic hydrogenation of carbonyl compound on said catalyst is also disclosed.
Abstract:
The invention relates to an improved method for purifying an organic solvent for the purpose of absorbing a maleic acid anhydride from a gaseous mixture. The inventive method is characterized by removing the maleic acid anhydride from the solvent, removing a partial flow from the solvent flow, and distilling said partial flow and returning it to the solvent flow. A low-boiling fraction and a high-boiling fraction are removed from the fraction that substantially consists of purified solvent and the fraction that substantially consists of purified solvent is returned to the solvent flow.
Abstract:
The invention relates to a reactor (1) in the form of a cylinder with a vertical longitudinal axis, for performing an autothermal gas-phase dehydrogenation of a hydrocarbon-containing gas stream (2) with an oxygen-containing gas stream (3), obtaining a reaction gas mixture, on a heterogeneous catalyst, which is designed as monolith (4), wherein one or more catalytically active zones (5) are arranged in the interior of the reactor (1), each zone comprising a packing of monoliths (4) stacked one next to another and/or one on top of another and wherein a mixing zone (6) with fixed installations is provided upstream of each catalytically active zone (5). The reactor has: - one or more feeder lines (7) at the lower end thereof for the hydrocarbon-containing gas stream (2) to be dehydrogenated; - one or more feeder lines (9) that can be regulated independently of one another for the oxygen-containing gas stream (3) flowing into each of the mixing zones (6), each feeder line (9) feeding one or more distributors (10); - and one or more discharge lines (11) at the upper end of the reactor (1) for the reaction gas mixture from the autothermal gas-phase dehydrogenation, wherein the interior wall of the reactor (1) is furnished with a continuous insulation layer (13, 14, 15) and wherein the accessibility of one or each of the plurality of catalytically active zones (5) from outside the reactor is guaranteed via - one or more manholes (12), or wherein one or each of the plurality of catalytically active zones (5), each comprising a respective packing of monoliths stacked one next to another and/or one on top of an other including - the mixing zone (6) with fixed installations provided upstream of each catalytically active zone (5) - the one or more feeder lines (9) controllable independently of one another - and the one or more distributors (10) that are each fed via a respective feeder line (9), are constructed as a structural element (24) that can be individually installed or uninstalled.