Abstract:
The invention relates to a diamine industrially producing method from a corresponding alkenile-nitrile which contains at least one C-C double bond consisting (a) in reacting the alkenile-nitrile in a first reactor with a corresponding monoamine by exothermally adding a monoamine to said double bond in such a way that an aminoalkyle nitrile is obtained, wherein the monoamine and water are provided and the alkenile-nitrile is added, (b) in evaporating the unreacted alkenile-nitrile and aminoalkyle for enriching the aminoalkyle nitrile produces in the sump of the first reactor, (c) in transferring the aminoalkyle nitrile bottom product of the step (b) to a second reactor, (d) in batchwisely catalytically hydrogenating the aminoalkyle nitrile transferred at the step (c) in such a way that a diamine is produced in the second reactor, wherein for each batch, an appropriate catalyst and water for hydrogenating nitrils into amines, a desired diamine and a base are provided, the second reactor is supplied with hydrogen and the aminoalkyle nitrile transferred at the step (c) is proportioned therein, and (e) in extracting the diamine and in possibly repeating the steps from (a) to (e). A device for producing the diamine and the use of the devices are also disclosed. The preferred diamine is embodied in the form of a 3-dimethylaminopropylamine (DMAPA).
Abstract:
The invention relates to a diamine industrially producing method from a corresponding alkenile-nitrile which contains at least one C-C double bond consisting (a) in reacting the alkenile-nitrile in a first reactor with a corresponding monoamine by exothermally adding a monoamine to said double bond in such a way that an aminoalkyle nitrile is obtained, wherein the monoamine and water are provided and the alkenile-nitrile is added, (b) in evaporating the unreacted alkenile-nitrile and aminoalkyle for enriching the aminoalkyle nitrile produces in the sump of the first reactor, (c) in transferring the aminoalkyle nitrile bottom product of the step (b) to a second reactor, (d) in batchwisely catalytically hydrogenating the aminoalkyle nitrile transferred at the step (c) in such a way that a diamine is produced in the second reactor, wherein for each batch, an appropriate catalyst and water for hydrogenating nitrils into amines, a desired diamine and a base are provided, the second reactor is supplied with hydrogen and the aminoalkyle nitrile transferred at the step (c) is proportioned therein, and (e) in extracting the diamine and in possibly repeating the steps from (a) to (e). A device for producing the diamine and the use of the devices are also disclosed. The preferred diamine is embodied in the form of a 3-dimethylaminopropylamine (DMAPA).
Abstract:
Disclosed is a method for the continuous production of N-Methyl-2-pyrrolidone (NMP) by reacting gamma-Butyrolactone (GBL) with Monomethylamine (MMA) in a liquid phase. GBL and MMA are used at a molar ratio ranging between 1:1.08 and 1:2, and the reaction is carried out at a temperature of 320 to 380 °C and an absolute pressure of 70 to 120 bar.
Abstract:
The invention relates to a reactor for carrying out high pressure reactions, comprising at least one tube (31), the ends of which pass through respective tube sheets (33) and connect to the tube sheets (33). The tube sheets (33) and the at least one tube (31) are enclosed by an outer shell so that an external space (39) is formed between the tube (31) and the outer shell. The tube sheets (33) each comprise at least one surface made of a nickel base alloy, and the at least one tube (31) is welded to the surface made of the nickel base alloy. The surface made of the nickel base alloy faces in the direction of the respective end of the reactor. The outer shell has a thickness sufficient to absorb stress forces that occur as a result of a difference in expansion due to a temperature difference between the tube (31) and the outer shell. The invention further relates to a method for starting up the reactor and for carrying out an exothermal reaction in the reactor.
Abstract:
The invention relates to a reactor for carrying out high pressure reactions, comprising at least one tube (31), the ends of which pass through respective tube sheets (33) and connect to the tube sheets (33). The tube sheets (33) and the at least one tube (31) are enclosed by an outer shell so that an external space (39) is formed between the tube (31) and the outer shell. The tube sheets (33) each comprise at least one surface made of a nickel base alloy, and the at least one tube (31) is welded to the surface made of the nickel base alloy. The surface made of the nickel base alloy faces in the direction of the respective end of the reactor. The outer shell has a thickness sufficient to absorb stress forces that occur as a result of a difference in expansion due to a temperature difference between the tube (31) and the outer shell. The invention further relates to a method for starting up the reactor and for carrying out an exothermal reaction in the reactor.
Abstract:
Moulding containing an aluminosilicate and aluminium oxide, wherein the moulding has a molar Al/Si ratio in the range of 10 to 30 and, for pores with a diameter of greater than 1 nm, has an at least bimodal pore distribution, wherein the volume of the pores of the moulding with a diameter of greater than 10 nm corresponds to at least 40% of the total pore volume of the moulding; a method of producing said moulding and a method of continuously producing methylamines by conversion of methanol and/or dimethyl ether with ammonia in the presence of a heterogeneous catalyst, the aforementioned mouldings being used as the catalyst.