摘要:
A nanosensor for detecting and quantifying lactate in different types of samples, such as tissues, intra-cellular and subcellular compartments, with high spatial and temporal resolution is disclosed. Methods comprising use of the nanosensor for quantifying the activity of lactate transporters, rates of cellular lactate production and cellular lactate consumption, and rate of mitochondrial pyruvate consumption are also disclosed. Methods for quantifying the transformation in energy metabolism that characterizes cancer cells with single-cell resolution and for detecting interference of candidate drugs with mitochondrial energetics are additionally disclosed.
摘要:
A novel class of transporter protein, referred to as SWEET, GLUE or Glü, is disclosed. These transporters provide a novel system for the transportation of sugars across membranes within a cell and between the inside and outside of a cell. Such transporters are useful for understanding and altering the sugar concentration within certain organs of an organism, and within certain organelles within the cell. These transporters are also useful in protecting plants from a pathogen attack.
摘要:
Neurotransmitter biosensors are disclosed, including YbeJ-based glutamate binding biosensors, comprising a neurotransmitter binding domain conjugated to donor and fluorescent moieties that permit detection and measurement of Fluorescence Resonance Energy Transfer upon binding neurotransmitter. Such biosensors are useful for the detection of neurotranmitter concentrations in vivo and in culture.
摘要:
The present invention provides methods for detecting and monitoring metabolite concentrations, which comprise detection and measurement of Fluorescence Resonance Energy Transfer upon ligand binding. The methods of the present invention are useful for real time monitoring of changes in metabolite levels in living cell cultures.
摘要:
Sucrose biosensors are disclosed, which comprise a sucrose binding domain conjugated to donor and fluorescent moieties that permit detection and measurement of Fluorescence Resonance Energy Transfer upon sucrose binding. Such biosensors are useful for real time monitoring of sucrose metabolism in living cells.
摘要:
Sucrose biosensors are disclosed, which comprise a sucrose binding domain conjugated to donor and fluorescent moieties that permit detection and measurement of Fluorescence Resonance Energy Transfer upon sucrose binding. Such biosensors are useful for real time monitoring of sucrose metabolism in living cells.
摘要:
The present invention relates to methods of increasing the levels of at least one sugar in developing seeds in a plant, with the methods comprising inserting an exogenous nucleic acid, which codes for at least one sugar transporter protein (SWEET protein), into a plant cell to create a transgenic plant cell, and subjecting the transgenic plant cell to conditions that promote expression of the at least one SWEET protein during seed development. The methods results in transgenic plant seeds, and transgenic plants that produce seed, where the levels of at least one sugar are increased as compared to seeds from non-transgenic plants of the same species grown under the same conditions.
摘要:
Neurotransmitter biosensors are disclosed, including YbeJ-based glutamate binding biosensors, comprising a neurotransmitter binding domain conjugated to donor and fluorescent moieties that permit detection and measurement of Fluorescence Resonance Energy Transfer upon binding neurotransmitter. Such biosensors are useful for the detection of neurotranmitter concentrations in vivo and in culture.
摘要:
Multimeric tryptophan biosensors are disclosed, which comprise tryptophan-binding domains conjugated to donor and fluorescent moieties that permit detection and measurement of Fluorescence Resonance Energy Transfer upon tryptophan binding. Such biosensors are useful for real time monitoring of tryptophan metabolism in living cells.