摘要:
The present invention takes the glucose oxidase GOD from Aspergillus niger as the mutation template to obtain the glucose oxidase GOD mutants with improved catalytic efficiency and thermal stability by site directed mutagenesis. The specific activity of the mutant of the present invention is 66% higher than that of the wild type GOD; the enzyme activity of the mutant of the present invention is 13.6 times higher than that of the wild type after being treated at 70°C for 10 min; and the enzyme activity of the mutant of the present invention is 29.4 times higher than that of the wild type after being treated at 80°C for 2 min.
摘要:
The present invention relates to the field of genetic engineering, in particular, the present invention relates to a method for producing a phytase variant with an improved thermal stability, and a phytase variant and the use thereof. The phytase variant contains at least one proline modification, compared to the phytase from Escherichia coli and other mutants thereof. The phytase variants with the modification have preferably improved properties, such as the thermal stability, optimal reaction temperature, pH property, specific activity, protease resistance and performance in animal feeds.
摘要:
The present invention relates to the field of genetic engineering, particularly to a recombinant expression vector for rapidly screening the high expression strains and a method for rapidly screening high expression strains. In the invention, an exogenous red fluorescent protein and Aspergillus fumigatus cell surface protein localization signal are fused and expressed, and the fusion gene (DsRed-AfMP1) is integrated into the genome of Trichoderma reesei, so as to construct a strain displaying red fluorescent protein on the surface of Trichoderma reesei. By sorting Trichoderma reesei strains with red fluorescent protein on the surface by flow cytometry, genes beneficial to the improvement of cellulase activity can be quickly isolated.
摘要:
The present invention relates to a novel phytase enzyme, a novel isolated nucleic acid molecule coding the enzyme, and a novel Yersinia intermedia having phytase activity. Particularly, the present invention relates to the phytase having (a) Theoretical molecular weight 45.5 kDa, (b) high specific activity 3960±248 U/mg, (c) high stability at high temperature and wide pH, (d) optimal pH of 4.0-5.0, (e) optimal temperature of 50-60°C, (f) high resistance to pepsin and trypsin. The phytase is very suitable to be used in feed of monogastrics as feed additive. The present invention also relates to a recombinant vector comprising said nucleic acid molecule, a recombinant host cell (e.g., Pichia pastoris ) harboring said recombinant vector, and a method for producing phytase using the recombinant host cell. The present invention further provides a feed additive comprising said phytase and/or host cells expressing a phytase as effective ingredient. In addition, the present invention provides a novel method for isolating phytase from a target organism.
摘要:
The present invention relates to mannanase PMan5A mutant having improved heat resistance, gene and application thereof. Said mutant is obtained by substitution the 93 th histidine with tyrosine, the 94 th phenylalanine with tyrosine, the 356 th leucine with histidine, and/or the 389 th alanine with proline. The thermal tolerance of the single site mutation mutant H93Y, L356H and A389P are greatly improved over that of the wild mannanase PMan5A, and the thermal tolerance of the combination mutants shows the stack effect of the single site mutation, demonstrating the amino acids at the sites of 93, 94, 356, and 389 play the important role for the thermal stability of the mannanase of GH5 family.
摘要:
The present invention relates to the field of agriculture biotechnology, specially relates to an amylase mutant having high specific activity and thermal stability, gene and use thereof. Said amylase mutant is obtained by performing substitution of S33A/S34E/V35H, and deletion of amino acids at the sites of 178 and 179 of the wild type amylase having amino acid sequence of SEQ ID NO:1, and having improved enzymatic activity and thermal stability than the wild type amylase.
摘要:
Provided are a glucose oxidase CnGODA, an encoding gene thereof, a recombinant expression vector comprising the gene, and a recombinant strain; the amino acid sequence of the glucose oxidase CnGODA is as represented in SEQ ID NO.1 or SEQ ID NO.2. Further provided is a method for use in preparing glucose oxidase CnGODA, and application of glucose oxidase CnGODA.
摘要:
The present invention relates to the field of genetic engineering, in particular, the present invention relates to a method for producing a phytase variant with an improved thermal stability, and a phytase variant and the use thereof. The phytase variant contains at least one proline modification, compared to the phytase from Escherichia coli and other mutants thereof. The phytase variants with the modification have preferably improved properties, such as the thermal stability, optimal reaction temperature, pH property, specific activity, protease resistance and performance in animal feeds.