Abstract:
A method of forming a thin, high-quality relaxed SiGe-on-insulator substrate (10) material is provided which first includes forming a SiGe or pure Ge layer on a surface of a first single crystal Si layer (14) which is present atop a barrier layer (12) that is resistant to the diffusion of Ge. Optionally forming a Si cap layer (18) over the SiGe or pure Ge layer (16), and thereafter heating the various layers at a temperature which permits interdiffusion of Ge throughtout the first single crystal Si layer (14), the optional Si cap (18) and the SiGe or pure Ge layer (16) thereby forming a substantially relaxed, single crystal SiGe layer atop the barrier layer (12). Additional SiGe regrowth and/or formation of a strained epi-Si layer may follow the above steps. SiGe-on-insulator substrate materials as well as structures including at least the SiGe-on-insulator substrate material are also disclosed herein.
Abstract:
A method for achieving a substantially defect free SGOI substrate which includes a SiGe layer that has a high Ge content of greater than about 25% atomic using a low temperature wafer bonding technique is described. The wafer bonding process described in the present application includes an initial prebonding annealing step that is capable of forming a bonding interface comprising elements of Si, Ge and O, i.e., interfacial SiGeO layer, between a SiGe layer and a low temperature oxide layer. The present invention also provides the SGOI substrate and structure that contains the same
Abstract:
A method to obtain thin (less than 300 nm) strain-relaxed Si1-xGex buffer layers on Si or silicon-on-insulator (SOI) substrates. These buffer layers have a homogeneous distribution of misfit dislocations that relieve the strain, remarkably smooth surfaces, and a low threading dislocation (TD) density, i.e. less than 10 cm . The approach begins with the growth of a pseudomorphic or nearly pseudomorphic Si1-xGex layer, i.e., a layer that is free of misfit dislocations, which is then implanted with He or other light elements and subsequently annealed to achieve the substantial strain relaxation. The very effective strain relaxation mechanism operating with this method is dislocation nucleation at He-induced platelets (not bubbles) that lie below the Si/Si1-xGex interface, parallel to the Si(001) surface.