摘要:
An integrated circuit has primary devices and redundant devices being selective substituted for the primary devices through at least one fuse. The fuse includes a first layer having at least one fuse link region, a second layer over the first layer and cavities in the second layer above the fuse link region.
摘要:
An integrated circuit has primary devices and redundant devices being selective substituted for the primary devices through at least one fuse. The fuse includes a first layer having at least one fuse link region, a second layer over the first layer and cavities in the second layer above the fuse link region.
摘要:
A process for manufacturing a deep trench capacitor in a trench (10). The capacitor comprises a collar (18) in an upper region of the trench and a buried plate (26) in a lower region of the trench. The improvement comprises, before forming the collar in the trench upper region, filling the trench lower region with a non-photosensitive underfill material (16) such as spin-on-glass. The process may comprise the steps of (a) forming a deep trench in a substrate; (b) filling the trench lower region with an underfill material; (c) forming a collar in the trench upper region; (d) removing the underfill; and (e) forming a buried plate in the trench lower region.
摘要:
A dynamic random access memory (DRAM) cell comprising a deep trench storage capacitor having an active transistor device partially disposed on a side wall of the trench. The side wall is aligned to a first crystallographic plane having a crystallographic orientation along a single crystal axis. A process for manufacturing such a DRAM cell comprises: (a) forming a deep trench in a substrate, (b) forming a faceted crystal region along the trench side wall having a single crystallographic orientation, and (c) forming a transistor device partially disposed on the faceted crystal region in the side wall. The faceted crystal region may be formed by growing an oxide collar, such as by local thermal oxidation under oxidation conditions selected to promote a higher oxidation rate along a first family of crystallographic axes than along a second family of crystallographic axes.
摘要:
Dual work function doping is provided by doping a selected number of gate structures having self-aligned insulating layer on top of the structures through at least one side wall of the gate structures with a first conductivity type to thereby provide an array of gate structures whereby some are doped with the first conductivity type and others of the gate structures are doped with a second and different conductivity type. Also provided is an array of gate structures whereby the individual gate structures contain self-aligned insulating layer on their top portion and wherein some of the gate structures are doped with a first conductivity type and other of the gate structures are doped with a second and different conductivity type.
摘要:
A method includes forming a trench capacitor in a semiconductor body. A recess is formed in the upper portion of the capacitor with such recess having sidewalls in the semiconductor body. A first material is deposited over the sidewalls and over a bottom of the recess. A second material is deposited over the first material. A mask is provided over the second material. The mask has: a masking region to cover one portion of said recess bottom; and a window over a portion of said recess sidewall and another portion of said recess bottom to expose underlying portions of the second material. Portions of the exposed underlying portions of the second material are selectively removing while leaving substantially un-etched exposed underlying portions of the first material. The exposed portions of the first material and underlying portions of the semiconductor body are selectively removed. An isolation region is formed in the removed portions of the semiconductor body. The mask is provided over the second material with a masking region covering one portion of said recess sidewall and one portion of said recess bottom and with a window disposed over an opposite portion of said recess sidewall and an opposite portion of said recess bottom to expose underlying portions of the second material. Etching is provided into the exposed underlying portions of the semiconductor body to form a shallow trench in the semiconductor body. An insulating material is formed in the shallow trench to form a shallow trench isolation region. With such method, greater mask misalignment tolerances are permissible.
摘要:
The present invention relates to a process of fabricating semiconductor memory structures, particularly deep trench semiconductor memory devices wherein a temperature sensitive high dielectric constant material is incorporated into the storage node of the capacitor. Specifically, the present invention describes a process for forming deep trench storage capacitors after high temperature shallow trench isolation and gate conductor processing. This process allows for the incorporation of a temperature sensitive high dielectric constant material into the capacitor structure without causing decomposition of that material. Furthermore, the process of the present invention limits the extent of the buried- strap outdiffusion, thus improving the electrical characteristics of the array MOSFET.
摘要:
A storage node for deep trench-based storage capacitor is formed by etching a trench (11) in a surface of a semiconductor substrate (10), forming a layer of dielectric (14) on a sidewall of the trench, partially removing the layer of dielectric material in order to expose an upper portion of the sidewall, growing a layer of oxide (16) on the upper portion of the sidewall, removing the remainder of the layer of dielectric material, doping to form a buried plate (17), forming a node dielectric (18), and forming an inner electrode (19) within the trench. The oxide layer at the upper portion of the trench is preferably formed by a LOCOS technique.
摘要:
A dynamic random access memory (DRAM) cell comprising a deep trench storage capacitor having an active transistor device partially disposed on a side wall of the trench. The side wall is aligned to a first crystallographic plane having a crystallographic orientation along a single crystal axis. A process for manufacturing such a DRAM cell comprises: (a) forming a deep trench in a substrate, (b) forming a faceted crystal region along the trench side wall having a single crystallographic orientation, and (c) forming a transistor device partially disposed on the faceted crystal region in the side wall. The faceted crystal region may be formed by growing an oxide collar, such as by local thermal oxidation under oxidation conditions selected to promote a higher oxidation rate along a first family of crystallographic axes than along a second family of crystallographic axes.
摘要:
A method includes forming a trench capacitor in a semiconductor body. A recess is formed in the upper portion of the capacitor with such recess having sidewalls in the semiconductor body. A first material is deposited over the sidewalls and over a bottom of the recess. A second material is deposited over the first material. A mask is provided over the second material. The mask has: a masking region to cover one portion of said recess bottom; and a window over a portion of said recess sidewall and another portion of said recess bottom to expose underlying portions of the second material. Portions of the exposed underlying portions of the second material are selectively removing while leaving substantially un-etched exposed underlying portions of the first material. The exposed portions of the first material and underlying portions of the semiconductor body are selectively removed. An isolation region is formed in the removed portions of the semiconductor body. The mask is provided over the second material with a masking region covering one portion of said recess sidewall and one portion of said recess bottom and with a window disposed over an opposite portion of said recess sidewall and an opposite portion of said recess bottom to expose underlying portions of the second material. Etching is provided into the exposed underlying portions of the semiconductor body to form a shallow trench in the semiconductor body. An insulating material is formed in the shallow trench to form a shallow trench isolation region. With such method, greater mask misalignment tolerances are permissible.