摘要:
Methods of doping nanostructures, such as nanowires, are disclosed. The methods provide a variety of approaches for improving existing methods of doping nanostructures. The embodiments include the use of a sacrificial layer to promote uniform dopant distribution within a nanostructure during post-nanostructure synthesis doping. In another embodiment, a high temperature environment is used to anneal nanostructure damage when high energy ion implantation is used. In another embodiment rapid thermal annealing is used to drive dopants from a dopant layer on a nanostructure into the nanostructure. In another embodiment a method for doping nanowires on a plastic substrate is provided that includes depositing a dielectric stack on a plastic substrate to protect the plastic substrate from damage during the doping process. An embodiment is also provided that includes selectively using high concentrations of dopant materials at various times in synthesizing nanostructures to realize novel crystallographic structures within the resulting nanostructure.
摘要:
The present invention relates to a system and process for producing a nanowire-material composite. A substrate (602) having nanowires (606) attached to a portion (604) of at least one surface is provided. A material is deposited over the portion to form the nanowire-material composite. The process further optionally comprises separating the nanowire-material composite from the substrate to form a freestanding nanowire-material composite. The freestanding nanowire material composite is optionally further processed into a electronic substrate. A variety of electronic substrates can be produced using the methods described herein. For example, a multi-color light-emitting diode can be produced from multiple, stacked layers of nanowire-material composites, each composite layer emitting light at a different wavelength.
摘要:
Methods, systems, and apparatuses for electronic devices having improved gate structures are described. An electronic device includes at least one snowier; a gate contact is positioned along part of the length of the snowier, and a dielectric material layer is between the gate contact and the at least one snowier. At least a portion of the source contact and/or the drain contact overlaps with the gate contact along the snowier length. In another aspect, an electronic device includes a snowier having a semiconductor core surrounded by an insulating shell layer. A ring shaped first gate region surrounds the snowier along a portion of the length of the snowier. A second gate region is positioned along the length of the snowier between the snowier and the substrate. A source contact and a drain contact are coupled to the semiconductor core of the snowier at respective exposed portions of the semiconductor core.
摘要:
The present invention is directed to systems and methods for nanowire growth and harvesting. In an embodiment, methods for nanowire growth and doping are provided, including methods for epitaxial oriented nanowire growth using a combination of silicon precursors. In a further aspect of the invention, methods to improve nanowire quality through the use of sacrifical growth layers are provided. In another aspect of the invention, methods for transferring nanowires from one substrate to another substrate are provided.