Abstract:
The present invention relates to a catalyst for decomposing hydrocarbons including hydrocarbons having 2 or more carbon atoms, comprising magnesium, aluminum, nickel and cobalt as constitutional elements, and further comprising ruthenium and/or palladium, wherein the metallic ruthenium and/or metallic palladium in the form of fine particles have an average particle diameter of 0.5 to 20 nm, and a content of the metallic ruthenium and/or metallic palladium is 0.05 to 5.0% by weight based on the weight of the catalyst. The catalyst of the present invention is capable of efficiently decomposing hydrocarbons including hydrocarbons having 2 or more carbon atoms (C 2 or more hydrocarbons), is less expensive, and exhibits an excellent catalytic activity for decomposition and removal of hydrocarbons, in particular, an excellent capability of decomposing propane, and an excellent anti-coking property.
Abstract:
The present invention relates to a porous catalyst body for decomposing hydrocarbons, comprising a porous composite oxide comprising at least magnesium and/or calcium, and aluminum, and metallic nickel having a particle diameter of 1 to 25 nm, wherein the porous catalyst body has an average crushing strength of not less than 5 kgf and a displacement length of not less than 0.05 mm as measured by compressing the porous catalyst body under a load of 5 kgf. The porous catalyst body for decomposing hydrocarbons according to the present invention is less expensive, and has an excellent catalytic activity for decomposition and removal of hydrocarbons, an excellent anti-sulfur poisoning property, a high anti-coking property even under a low-steam condition, a crushing strength and a displacement length which are optimum for DSS operation, and an excellent durability.
Abstract:
The present invention aims at providing a porous molded product comprising magnesium and aluminum which is satisfactory in both of a specific surface area and mechanical properties, can be suitably used as filters, drying agents, adsorbents, purifying agents, deodorants, carriers for catalysts, etc., includes a large amount of micropores, and has a large specific surface area and a high strength, as well as a process for producing the porous molded product. The porous molded product of the present invention comprises at least magnesium and aluminum, and having a magnesium content of 10 to 50% by weight in terms of a magnesium atom, an aluminum content of 5 to 35% by weight in terms of an aluminum atom, a pore volume of 0.01 to 0.5 cm 3 /g, an average pore diameter of not more than 300 Å and an average collapse strength of not less than 3 kg, and can be produced by molding hydrotalcite comprising at least magnesium and aluminum and then calcining the resulting molded product at a temperature of 500 to 1500°C.
Abstract:
The present invention relates to ferromagnetic particles capable of exhibiting a high purity and excellent magnetic properties from the industrial viewpoints and a process for producing the ferromagnetic particles, and also provides an anisotropic magnet, a bonded magnet and a compacted magnet which are obtained by using the ferromagnetic particles. The ferromagnetic particles comprising an Fe 16 N 2 compound phase in an amount of not less than 80% as measured by Mössbauer spectrum and each having an outer shell in which FeO is present in the form of a film having a thickness of not more than 5 nm according to the present invention can be produced by subjecting iron oxide or iron oxyhydroxide having an average major axis diameter of 40 to 5000 nm and an aspect ratio (major axis diameter/minor axis diameter) of 1 to 200 as a starting material to dispersing treatment to prepare aggregated particles; subjecting the iron compound particles passed through a mesh to hydrogen reducing treatment at a temperature of 160 to 420°C; and then subjecting the resulting particles to nitridation treatment at a temperature of 130 to 170°C.
Abstract:
The present invention relates to Fe 16 N 2 particles in the form of a single phase which are obtained by subjecting iron oxide or iron oxyhydroxide whose surface may be coated with at least alumina or silica, if required, as a starting material, to reducing treatment and nitridation treatment, a process for producing the Fe 16 N 2 particles in the form of a single phase for a heat treatment time of not more than 36 hr, and further relates to an anisotropic magnet or a bonded magnet which is obtained by magnetically orienting the Fe 16 N 2 particles in the form of a single phase. The Fe 16 N 2 particles according to the present invention can be produced in an industrial scale and have a large BH max value.