摘要:
An interbody spinal implant (1) having at least three distinct surfaces (10, 60a, 70a) including at least one integration surface having a roughened surface topography (80) including macro features, micro features, and nano features, without sharp teeth that risk damage to bone structures; at least one graft contact surface having a coarse surface topography including micro features and nano features; and at least one soft tissue surface having a substantially smooth surface including nano features. Also disclosed are processes of fabricating the different surface topographies, which may include separate macro processing, micro processing, and nano processing steps.
摘要:
An implant stabilizes two adjacent bones of a joint, while enabling a natural kinematic relative movement of the bones. Support components are connected to each bone of the joint, and a flexible core is interposed between them. The core and at least one of the support components are provided with a smooth sliding surface upon which the core and support component may slide relative to each other, enabling a corresponding movement of the bones. The surfaces may have a mating curvature, to mimic a natural movement of the joint. The core is resilient, and may bend or compress, enabling the bones to move towards each other, and or to bend relative to each other.
摘要:
A spinal implant having a top surface, a bottom surface, opposing lateral sides, and opposing anterior and posterior portions. At least one of the top surface and bottom surface has a roughened surface topography, without sharp teeth that risk damage to bone structures, adapted to grip bone through friction generated when the implant is placed between two vertebrae and to inhibit migration of the implant. At least one of the top surface and the bottom surface also includes at least one self-deploying anchor having an expulsion tab and a bone-engaging tip that causes the implant to resist expulsion once the expulsion tab is deployed.
摘要:
An anterior cervical column support having a hollow frame having a top load bearing surface and a bottom load bearing surface may be inserted between a first spinal vertebra and a second spinal vertebra. The top load bearing surface and the bottom load bearing surface may each include an opening allowing access to the interior of the frame. A front surface may extend between the top load bearing surface and the bottom load bearing surface, and a rear surface may extend between the top load bearing surface and the bottom load bearing surface. Two side surfaces are attached between the front surface and the rear surface, each side surface having a solid side panel that is at least x-ray translucent. An anterior (front) plate is attached to the front surface of the support device, where the front plate includes clearance holes for receiving fasteners for holding the front plate in position. The top load bearing surface and the bottom load bearing surface may include a serrated or other high friction surface for applying frictional forces between the load bearing surfaces and adjacent vertebrae.