Abstract:
The present invention relates to a process for the production of a panel for floor or wad coverings comprising the steps of mixing and homogenising raw materials, thereby obtaining a dryblend, extruding said dryblend, thereby obtaining one or more thermoplastic layers, laminating the afore-mentioned thermoplastic layers, thereby obtaining a laminate, and profiling said laminate, thereby obtaining a panel for floor or wall coverings, wherein at least one thermoplastic layer is extruded by means of a co-rotating twin-screw extruder with pressure element.
Abstract:
What is proposed is a mixing and kneading machine (1) which is suitable, in particular, for continuously conditioning metals such as aluminium or magnesium for a subsequent die-casting operation. To this end, the mixing and kneading machine (1) has a worm shaft (3) which rotates and at the same time moves in translation in the axial direction in a housing (2). The temperature of both the housing (2) and the worm shaft (3) is controlled by means of a flowing gas in such a manner that the conditioned metal assumes a thixotropic state when it leaves the mixing and kneading machine (1).
Abstract:
A process for preparing a blend of thermoplastic polymer and resin modifier within a single-screw extruder, wherein the resin modifier is a hydrocarbon resin.
Abstract:
The present invention relates to polyester polymer particle having an intrinsic viscosity (It.V.), a surface, and a center, wherein the It.V. at the surface of the particle is less than 0.25 dL/g higher than the It. V. at the center of the particle. The polyester polymer particle is desirably crystalline to prevent the particles from sticking to each other while drying, and desirably contains less than 10 ppm acetaldehyde. A polyester container, preferably a preform or beverage bottle, is made by feeding crystallized polyester particles having an It.V. of at least 0.70 dL/g to an extrusion zone, melting the particles in the extrusion zone to form a molten polyester polymer composition, and forming a sheet or a molded part from extruded molten polyester polymer, wherein at least a portion of the polyester particles have an It.V. at their surface which does not vary from their It.V. at their center by more than 0.25 dL/g, and the particles have not been solid state polymerized. Such polyester compositions have an It.V. suitable for containers, yet lose less It.V. during melt processing than existing polyesters.