Abstract:
This disclosure relates to the field of molecules having pesticidal utility against pests in Phyla Arthropoda, Mollusca, and Nematoda, processes to produce such molecules, intermediates used in such processes, compositions containing such molecules, and processes of using such molecules and compositions against such pests. These molecules and compositions may be used, for example, as acaricides, insecticides, miticides, molluscicides, and nematicides. This document discloses molecules having the following formula ("Formula One").
Abstract:
Disclosed herein are non-natural amino acids and polypeptides that include at least one non-natural amino acid, and methods for making such non-natural amino acids and polypeptides. The non-natural amino acids, by themselves or as a part of a polypeptide, can include a wide range of possible functionalities, but typical have at least one oxime, carbonyl, dicarbonyl, and/or hydroxylamine group. Also disclosed herein are non-natural amino acid polypeptides that are further modified post-translationally, methods for effecting such modifications, and methods for purifying such polypeptides. Typically, the modified non-natural amino acid polypeptides include at least one oximine, carbonyl, dicarbonyl, and/or hydroxylamine group. Further disclosed are methods for using such non-natural amino acid polypeptides and modified non-natural amino acid polypeptides, including therapeutic, diagnostic, and other biotechnology uses.
Abstract:
The present invention relates to a method for preparing formamide compounds using carbon dioxide, and to the use of said method for manufacturing vitamins, pharmaceutical products, adhesives, acrylic fibres, synthetic leathers, pesticides and fertilisers. The invention also relates to a method for manufacturing vitamins, pharmaceutical products, adhesives, acrylic fibres, synthetic leathers, pesticides and fertilisers which includes a step of preparing formamide compounds by the method according to the invention.
Abstract:
Disclosed herein are non-natural amino acids and polypeptides that include at least one non-natural amino acid, and methods for making such non-natural amino acids and polypeptides. The non-natural amino acids, by themselves or as a part of a polypeptide, can include a wide range of possible functionalities, but typical have at least one oxime, carbonyl, dicarbonyl, and/or hydroxylamine group. Also disclosed herein are non-natural amino acid polypeptides that are further modified post-translationally, methods for effecting such modifications, and methods for purifying such polypeptides. Typically, the modified non-natural amino acid polypeptides include at least one oximine, carbonyl, dicarbonyl, and/or hydroxylamine group. Further disclosed are methods for using such non-natural amino acid polypeptides and modified non-natural amino acid polypeptides, including therapeutic, diagnostic, and other biotechnology uses.
Abstract:
The present invention relates to a positive photosensitive composition, and in particular to a material for plate printing for heat mode printing. The positive photosensitive composition of the present invention comprises at least a diazo compound represented by the following General Formula 1, and a water-insoluble but alkaline water-soluble polymer: (where Z represents an organic group in which the pKa of dissociating H in Ph-NH-Z is 14 or less; and Q 1 and Q 2 represent organic groups, where Q 1 and Q 2 may be bonded to form an aliphatic ring or aromatic ring).
Abstract:
The current application relates to a pharmaceutical composition for the treatment or amelioration of a neurological disease, wherein the composition comprises a therapeutically effective amount of a caspase-6 inhibitor which is an arylpropynamide derivative. The composition can be formulated for oral or topical administration, subcutaneous, intravenous, or intramuscular injection, infusion, inhalation, or intrthecal injection.
Abstract:
Disclosed herein are non-natural amino acids and polypeptides that include at least one non-natural amino acid, and methods for making such non-natural amino acids and polypeptides. The non-natural amino acids, by themselves or as a part of a polypeptide, can include a wide range of possible functionalities, but typical have at least one oxime, carbonyl, dicarbonyl, and/or hydroxylamine group. Also disclosed herein are non-natural amino acid polypeptides that are further modified post-translationally, methods for effecting such modifications, and methods for purifying such polypeptides. Typically, the modified non-natural amino acid polypeptides include at least one oximine, carbonyl, dicarbonyl, and/or hydroxylamine group. Further disclosed are methods for using such non-natural amino acid polypeptides and modified non-natural amino acid polypeptides, including therapeutic, diagnostic, and other biotechnology uses.