Abstract:
The invention provides a composition comprising core-shell nanoparticles, the nanoparticles comprising (a) cationic core material comprising polymer; and (b) a shell material comprising silica. Preferred core materials comprise diblock copolymer micelles comprising one block of dialkylaminoethyl methacrylate units which are partially or fully quaternised and one block of dialkylaminoethyl methacrylate units that remain non-quaternised . The invention also provides a method for the preparation of the said composition, the method involving (a) preparing a cationic core material comprising polymer; and (b) coating the core material with a shell comprising silica by treating the polymer with a silica precursor under ambient conditions. The invention also envisages a composition comprising core-shell nanoparticles which is adapted to facilitate controlled delivery of at least one active agent into a system in response to controlled changes in the pH of the system.
Abstract:
A composition is provided that comprises at least the following: polymer particles comprising a coating on at least a portion of the total surface of the polymer particles, and wherein the coating is formed from a powder composition comprising at least one inorganic powder, and at least one organic powder selected from a metal stearate and/or a polymer powder, and wherein the weight ratio of the total amount of the inorganic powder to the total amount of the organic powder is from 3.0 to 50.0.
Abstract:
The present invention relates to a polymer composition having improved scratch resistance properties, the composition comprising (i) one or more polymers with a glass transition temperature (Tg) of at least 25° C., and (ii) solid particulate material having a surface modified with an organic modifier of formula (I), an organic modifier of formula (I) being the only organic modifier used to modify a surface of the solid particulate material, wherein the solid particulate material is distributed at least throughout a surface layer of the one or more polymers, and wherein the improved scratch resistance is relative to that of the one or more polymers absent the distributed particulate material, (I) where R is selected from a quaternary ammonium cation, a quaternary phosphonium cation, and imidazolium cation and a pyridinium cation; x is an integer ranging from 1-5; Ry is selected from OH, C(O)OH, NH2, SH and CH3; and Z is a counter anion.
Abstract:
Various embodiments disclosed relate to melt-stabilized materials including ultra high molecular weight polyethylene (UHMWPE), methods of making the same, and medical implants including the same. In various embodiments, the present invention provides a method of melt-stabilizing a material including UHMWPE. The method includes obtaining or providing a solid material including UHMWPE including a first concentration of free-radicals. The method includes coating at least part of the solid material with a liquid composition including at least one antioxidant, to provide a coated solid material. The method includes heating the coated solid material in an environment including oxygen, the heating being sufficient to melt at least part of the UHMWPE, to provide a heated material. The method also includes solidifying the heated material, to provide a melt-stabilized material including UHMWPE including a second concentration of free-radicals, wherein the second concentration of free-radicals is less than the first concentration of free-radicals.
Abstract:
There are provided a granular adhesive agent including a core portion and a shell portion, wherein the core portion including an adhesive composition and the shell portion is formed from solid particles, and a method for producing a granular adhesive agent. It is preferred that the solid particles include fine particles with a number average particle diameter of less than or equal to 500 µm as the main component. The granular adhesive agent according to the present invention is excellent in handling properties.
Abstract:
The invention is based on the recognition that known antimicrobial compounds, such as nisin or other lantibiotics, can be made to form a long lasting antimicrobial surface coating by linking the peptide with a block polymer, such as PLURONIC® F108 or an end group activated polymer (EGAP) in a manner to form a flexible tether and/or entrap the peptide. The entrapped peptide provides antimicrobial action by early release from entrapment while the tethered peptide provides longer lasting antimicrobial protection. Antimicrobial gels and foams may be prepared using the antimicrobial peptide containing block copolymers.
Abstract:
The invention concerns composite particles based on a polymer core and containing an active substance, a coating comprising at least an aluminium, silicon, zirconium and/or a transition metal oxide and/or hydroxide, and an intermediate layer based on an alkaline-earth salt, and the methods for preparing them. The invention also concerns the use of said particles in food, pharmaceutical, cosmetic and phytosanitary products.
Abstract:
The invention provides electroconductive particles comprising a styrene copolymer core and an external gold coating, characterised in that as said copolymer core is used a styrene copolymer comprising less than 50 wt. % styrene residues.
Abstract:
Provided are a thermoplastic elastomer composition containing 100 parts by mass of (a) a specified hydrogenated block copolymer and 0.01 to 5 parts by mass of (b) at least one additive selected from an antioxidant and a light stabilizer, wherein the additive (b) is soluble in toluene at room temperature, and the additive (b) exists in the inside and on the surface of the pellet; and a molded article formed from the pellet.
Abstract:
The present invention relates to a polymer composition having improved scratch resistance properties, the composition comprising (i) one or more polymers with a glass transition temperature (Tg) of at least 25° C., and (ii) solid particulate material having a surface modified with an organic modifier of formula (I), an organic modifier of formula (I) being the only organic modifier used to modify a surface of the solid particulate material, wherein the solid particulate material is distributed at least throughout a surface layer of the one or more polymers, and wherein the improved scratch resistance is relative to that of the one or more polymers absent the distributed particulate material, (I) where R is selected from a quaternary ammonium cation, a quaternary phosphonium cation, and imidazolium cation and a pyridinium cation; x is an integer ranging from 1-5; Ry is selected from OH, C(O)OH, NH2, SH and CH3; and Z is a counter anion.