Abstract:
A spectrometric instrument passes flashing light through a sample and has a linear detector operated by the computer to integrate signals for an established number of flashes to obtain an integrated unit of the signal data, from which spectral information is displayed on a monitor. Over a full spectral range, the established number is determined as that which effects a highest peak height proximately below a preselected maximum, and light source voltage is adjusted to bring the peak height closer to the maximum. For a narrower spectral range, an operating number of flashes for a unit is increased above the established number to accommodate a lower highest peak in the range. Wavelength calibration uses peaks in the light source. Corrections are made for stray light and non-linearity of detector response. Calculation of auxiliary information derived from input of auxiliary data through a touch screen is displayed on the monitor.
Abstract:
An acousto-optic tunable filter 4 including: an acousto-optic crystal 41; an acoustic wave driver 42; and a piezoelectric transducer 43, is provided in front of a light source section 2 including a plurality of light sources 2A, 2B, ... 2N having different wavelength characteristics. The frequency of RF generated by the acoustic wave driver 42 is varied in accordance with a desired wavelength. Thus, the light having the desired wavelength is incident on a converging lens 5 as plus and minus first-order light beams, and the light having wavelengths other than the desired wavelength is incident on a converging lens 5 as a zero-order light beam. The converging lens 5 converges the plus and minus first-order light beams and the zero-order light beams at positions different from each other. A selector 6 having openings located at the positions onto which the plus and first-order light beams are converged is provided in front of the converging lens 5. Therefore, only the light having the desired wavelength can pass through the selector 6 and is emitted from the light source apparatus 1.
Abstract:
An optical system for a multidetector array spectrophotometer includes multiple light sources (10,12) for emitting light of selected wavelength ranges and means for selectively transmitting the selected wavelength ranges of light to respective slits (40,42) of a multi-slit spectrograph for multiple wavelength range detection. The spectrograph has two or more slits (40,42) which direct the selected wavelength ranges of the light spectra to fall upon a dispersive and focusing system which collects light from each slit, disperses the light by wavelength and refocuses the light at the positions of a single set of detectors (46).
Abstract:
A system for measuring an optical spectral response or property and/or IV data of a device or object under test (9), comprising in optically coupled sequence: a broadband light source (1) for emitting light of a prede- fined spectrum, a slit and/or light guide (2), a wavelength dispersive device (3), a spatial light modulator (5) for re- ceiving the emitted light and controlling an intensity and spectrum of light reflected by said modulator (5), focusing optics (6, 7, 8, 12, 13, 14) for the reflected light directed towards a reference detector (15) and towards the device or object under test (9), wherein the spatial light modulator (5) is embodied as a beamsplitter and is combined with a fil- ter (4) for suppression of second and higher order frequen- cies of the primary frequencies in the reflected light.
Abstract:
Spectroscopy apparatus for spectrochemical analysis of a sample having an excitation source (60) for providing spectral light (62) of the sample for analysis. The spectral light (62) is analysed via an optical system (64-66-68) that includes a polychromator (70, 74-80) and solid state multielement array detector (82). The elements (i.e. pixels) of the detector (82) are serially read by means (84) to provide light intensity measurements as a function of wavelength. A problem is that the elements (pixels) of the detector (82) continue to accumulate charge during the serial read-out. This is avoided by providing an optical shutter (72) for blocking the spectral light (62) whilst elements (pixels) of the detector (82) are being serially read. Shutter (72) has a piezoelectric actuator which is preferably a bimorph mounted as a cantilever. It is preferably located adjacent to the entrance aperture (70) of the polychromator. Bimorph structures for the actuator and drive and protective circuit arrangements are also disclosed.
Abstract:
A hemispherical detector comprising a plurality of photodetectors (12) arranged in a substantially contiguous array, the array being substantially in the shape of a half-sphere, the half-sphere defining a closed end (50) and an open end (60), the open end (60) defining a substancially circular face. Also provided is a method for constructing a hemispherical detector comprising the steps of making a press mold of the desired shape of the hemispherical detector, pouring a material into the press mold to form a cast, finishing the cast to remove any defects, coating the cast with a coating material, and attaching a plurality of photodetectors to the cast.
Abstract:
An optical system having a first order spectral range that is usable in an optical spectrum analyzer receives an broadband optical test signal and a optical calibration signal and couples the optical signals via two optically isolated paths to separate optical detectors. First and second pairs of optical fibers, with each pair having an input fiber and an output fiber, are positioned in a focal plane of a collimating optic that has an optical axis. The fiber pairs are symmetrically positioned on either side of the optical axis with the input fibers positioned on one side of the optical axis and the output fibers positioned on the opposite side of the optical axis. The input fibers receive the optical test signal and the optical calibration signal. The output optical fibers are coupled to first and second optical detectors. An optical calibration source generates second order or greater spectral lines that fall within the first order spectral range of the optical system. A diffraction grating receives the optical test signal and the optical calibration signal from the collimating optic and separates the first order spectral components of the broadband optical test signal and passes the second order or greater spectral lines of the optical calibration signal. The first optical detector that is responsive to the first order spectral components of the optical test signal receives the optical test signal from the collimating optic and converts the optical test signal to an electrical signal. A second optical detector that is responsive to the second order or greater spectral lines of the optical calibration signal concurrently receives the optical calibration signal from the collimating optic and converts the calibrations signal to an electrical signal.