Abstract:
Apparatus for detecting light emitted by assay samples is provided, in which light emitted by the sample is collected for transmission to a charge coupled device camera (74) by an optical fibre bundle. The cross-sectional area of the optical fibre bundle corresponds to the area of the sample, the end of which is located close to the sample for detecting any light emitted therefrom, and selected fibres (30) of those making up the bundle are separated from the remainder and extend to a source of excitation radiation (76) and serve to convey excitation radiation (if required) directly to a corresponding plurality of points distributed over the area of the end face of the bundle and therefore over the area of the sample. The remaining fibres (32, 38) of the bundle serve to collect emitted light (whether generated by fluorescence caused by excitation or otherwise) and provide a light path to the charge coupled device camera, wherein the ends of the excitation fibres and the ends of the emitted light collecting fibres are distributed uniformly over the area of the fibre bundle presented to the reaction site.
Abstract:
A dual wavelength optical sensor for measuring the optical characteristics of sensing films which are responsive to a particular quantity to be measured. The optical sensor includes a light source (16, 18) for producing light outputs at two distinct wavelengths and transmitting twin components of light to first and second outputs. A time-shared optical fiber (26) receives the two distinct wavelengths of light from the first output and carries the light on a time-shared basis to a sensor probe (14). A sample detector (30) receives the two distinct wavelengths of light transmitted from the thin sensing film. A reference detector (34) receives the two distinct wavelengths of light from the second output and monitors the output intensity of the light source. A signal processing system (35) combines the measurements of the optical characteristics of the thin sensing film in response to each of the two distinct wavelengths to provide measurements which account for changes in the optical properties of the thin sensing film.
Abstract:
Exemplary systems, devices, methods, apparatus and computer-accessible media for providing and/or utilizing optical frequency domain imaging (OFDI) and fluorescence of structures and, e.g., multimodality imaging using OFDI techniques and fluorescence imaging techniques are described. For example, an arrangement can provide at least one electro-magnetic radiation to an anatomical structure. Such exemplary arrangement can include at least one optical core and at least one cladding at least partially surrounding the fiber(s). A region between the optical core(s) and the cladding(s) can have an index that is different from indexes of the optical core(s) and the cladding(s). The arrangement can also include at least one apparatus which is configured to transmit the radiation(s) via the optical core(s) and the cladding(s) to the anatomical structure.
Abstract:
The sensor system monitors solutes in a liquid stream by analyzing the amount of light absorbed in a liquid in a particular wavelength band. The sensor system is arranged for selectability of the type of fiber used for transmission and adjustability of the liquid gap length in the liquid so that individual installations can be arranged with optimum characteristics for sensing particular chemical species in solution by absorption spectroscopy.
Abstract:
Die Erfindung betrifft einen miniaturisierten Feuchtesensor. Die Aufgabe der Erfindung einen Feuchtesensor unter Anwendung von Lichtleitfasern und Interferenzschichtbauelementen anzugeben, der sich kompakt und klein herstellen läßt, über einen großen auch varierbar einstellbaren Meßbereich verfügt, die Nachteile des Standes der Technik behebt und sich kostengünstig in großen Stückzahlen unter Kontrolle des Herstellungsprozesses fertigen läßt wird erfindungsgemäß dadurch gelöst, daß die stirnseitige Endfläche wenigstens einer Lichtleitfaser mit einem optisch durchlässigen Bauelement verbunden ist und auf diesem Bauelement wenigstens eine Feuchte aufnehmende Interferenzschichtanordnung mit optischer Wirkrichtung auf die stirnseitige Faserendfläche angebracht ist.
Abstract:
An identification device 10 comprises a retroreflector 12 for receiving an incident beam of radiation 14 from a detection unit 16 remote from the device and retroreflecting the incident beam back to the detection unit so that the device can be identified. The retroflector comprises a substantially spherical graded refractive index lens 20; a reflective part 22 for retroreflecting the incident radiation beam passing through the lens; and a tagging layer 24 disposed between the lens and the reflective part, wherein the tagging layer is selected to cause the retroreflected beam to comprise a spectrum of radiation which is characteristic of the device and which can be identified by the detection unit by comparison with a predetermined spectrum.
Abstract:
Capteur optique à double longueur d'onde servant à mesurer les caractéristiques optiques des couches détectrices sensibles à une certaine grandeur à mesurer. Le capteur comprend une source lumineuse (16, 18) produisant des sorties lumineuses ayant deux longueurs d'onde distinctes, et émettant une paire de composantes lumineuses vers une première et une seconde sortie. Une fibre optique exploitée en temps partagé (26) reçoit la lumière ayant deux longueurs d'ondes distinctes et étant émise par la première sortie, et transmet cette lumière, dans des conditions d'exploitation en temps partagé, à une sonde détectrice (14). Un détecteur d'échantillonnage (30) reçoit la lumière ayant deux longueurs d'ondes distinctes et étant émise par la couche mince détectrice. Un détecteur de référence (34) reçoit la lumière ayant deux longueurs d'ondes distinctes et étant émise par la seconde sortie, et contrôle l'intensité à la sortie de la source lumineuse. Un système de traitement de signaux (35) associe les unes aux autres les mesures des caractéristiques optiques de la couche mince détectrice en réponse à chacune des deux longueurs d'ondes distinctes, afin de produire des mesures exprimant les variations des caractéristiques optiques de la couche mince détectrice.
Abstract:
Exemplary systems, devices, methods, apparatus and computer-accessible media for providing and/or utilizing optical frequency domain imaging (OFDI) and fluorescence of structures and, e.g., multimodality imaging using OFDI techniques and fluorescence imaging techniques are described. For example, an arrangement can provide at least one electro-magnetic radiation to an anatomical structure. Such exemplary arrangement can include at least one optical core and at least one cladding at least partially surrounding the fiber(s). A region between the optical core(s) and the cladding(s) can have an index that is different from indexes of the optical core(s) and the cladding(s). The arrangement can also include at least one apparatus which is configured to transmit the radiation(s) via the optical core(s) and the cladding(s) to the anatomical structure.
Abstract:
Apparatus for detecting light emitted by assay samples is provided, in which light emitted by the sample is collected for transmission to a charge coupled device camera (74) by an optical fibre bundle. The cross-sectional area of the optical fibre bundle corresponds to the area of the sample, the end of which is located close to the sample for detecting any light emitted therefrom, and selected fibres (30) of those making up the bundle are separated from the remainder and extend to a source of excitation radiation (76) and serve to convey excitation radiation (if required) directly to a corresponding plurality of points distributed over the area of the end face of the bundle and therefore over the area of the sample. The remaining fibres (32, 38) of the bundle serve to collect emitted light (whether generated by fluorescence caused by excitation or otherwise) and provide a light path to the charge coupled device camera, wherein the ends of the excitation fibres and the ends of the emitted light collecting fibres are distributed uniformly over the area of the fibre bundle presented to the reaction site.