摘要:
A radiation receiving system for an inspection apparatus, used to perform measurements on target structures on lithographic substrates as part of a lithographic process, comprises a spectrometer with a number of inputs. The radiation receiving system comprises: a plurality of inputs, each input being arranged to provide radiation from a target structure; a first optical element operable to receive radiation from each of the plurality of inputs; a second optical element operable to receive radiation from the first optical element and to scatter the radiation; and a third optical element operable to direct the scattered radiation onto a detector. The second optical element may for example be a reflective diffraction grating that diffracts incoming radiation into an output radiation spectrum.
摘要:
Apparatus, systems, and methods are used for detecting the alignment of a feature on a substrate using a polarization independent interferometer. The apparatus, system, and methods include optical elements that receive light that has diffracted or scattered from a mark on a substrate. The optical elements may split the diffracted light into multiple subbeams of light which are detected by one or more detectors. The diffracted light may be combined optically or during processing after detection. The system may determine alignment and/or overlay based on the received diffracted light having any polarization angle or state.
摘要:
A lithography apparatus which forms a pattern on a substrate, comprises a stage (14) holding the substrate and being movable; a measurement unit (4) configured to irradiate a side surface of the stage with light and measure a position of the stage, a generation unit (6) configured to generate a flow of gas in a space where the stage moves, a detection unit (15) configured to detect respective positions of sample shot regions formed on the substrate, and a control unit (16) configured to determine an order of detecting the sample shot regions by the detection unit such that detection by the detection unit is performed sequentially from a sample shot region closer to the measurement unit with respect to sample shot regions located on a downstream side of the flow of the gas from a center of the substrate.
摘要:
A sensor system to measure a physical quantity, the system including a parallel detection arrangement with multiple detectors to allow measurements in parallel at different spatial locations, wherein the multiple detectors share a noise source, wherein the sensor system is configured such that the multiple detectors each output a signal as a function of the physical quantity, and wherein the sensor system is configured such that at least one detector responds differently to noise originating from the shared noise source than the one or more other detectors.
摘要:
A controller measures positional information of a stage (WST) within an XY plane using three encoders (Enc1, Enc2 and Enc3) which at least include one each of an X encoder and a Y encoder of an encoder system, and the stage (WST) is driven in the XY plane, based on measurement results of the positional information and positional information (p 1 , q 1 ), (p 2 , q 2 ), and (p 3 , q 3 ) in a surface parallel to the XY plane of a head (encoders) (Encl, Enc2 and Enc3) used for measurement of the positional information. Accordingly, it becomes possible to control the movement of the stage with good precision, while switching the head (the encoder) used for control during the movement of the stage (WST) using the encoder system which includes a plurality of heads.
摘要:
A transparent imprint template mold is configured with gratings surrounding the active imprint area. The gratings are fabricated at the same time as the active area and thus accurately define the active area with respect to the gratings. The substrate is positioned in tool coordinates under the template mold. A sensor system generates a beam of optical energy and receives reflected energy only at a specific angular window and is used to locate the template mold. The sensor system is scanned to locate the substrate and the gratings in tool coordinates. In this manner, the relative position of the template mold is determined with respect to the substrate in tool coordinates. The substrate is then accurately positioned with respect to the template mold. The system may be used to track imprinted pattern position relative to the substrate and to determine concentricity of patterns to substrates.
摘要:
A method, structure, system of aligning a substrate to a photomask. The method comprising: directing light through a clear region of the photomask in a photolithography tool, through a lens of the tool and onto a set of at least three diffraction mirror arrays on the substrate, each diffraction mirror array of the set of at least three diffraction mirror arrays comprising a single row of mirrors, all mirrors in any particular diffraction mirror array spaced apart a same distance, mirrors in different diffraction mirror arrays spaced apart different distances; measuring an intensity of light diffracted from the set of at least three diffraction mirror arrays onto an array of photo detectors; and adjusting a temperature of the photomask or photomask and lens based on the measured intensity of light.
摘要:
A lithographic apparatus has an actuator to move an object with a mark (M3) with a plurality of structures (19) in rows and columns. An alignment arrangement has a light source, optics and a detector. The light source and the optics produce an alignment beam with a first spot portion (24x) extending in a first direction parallel to the columns and a second spot portion (24y) extending in a second direction parallel to the rows. The optics direct the alignment beam to the mark (M3), receive alignment radiation back from the mark (M3) and transmit the alignment radiation to the detector. The detector transmits an alignment signal to a processor that calculates a two-dimensional position of the mark (M3) based on the alignment signal.
摘要:
An alignment system for a lithographic apparatus has a source of alignment radiation, a detection system that has a first detector channel and a second detector channel, and a position determining unit in communication with the detection system. The position determining unit processes information from the first and second detector channels in combination to determine a position of an alignment mark on a first object relative to a reference position on a second object based on the combined information.