摘要:
Embodiments are disclosed for display devices including holographic optical elements for directing light toward image producing panels. An example display device includes a phase modulating image producing panel, and a holographic optical element configured to receive collimated light and to output converging light toward the phase modulating image producing panel, the phase modulating image producing panel being configured to use at least a portion of the converging light to produce an image with collimated or diverging light.
摘要:
There is provided a lighting device arranged to produce a controllable light beam for illuminating a scene. The device comprises an addressable spatial light modulator arranged to provide a selectable phase delay distribution to a beam of incident light. The device further comprises Fourier optics arranged to receive phase-modulated light from the spatial light modulator and form a light distribution. The device further comprises projection optics arranged to project the light distribution to form a pattern of illumination as said controllable light beam.
摘要:
A display system (300) comprising an optical system and a processing system. The optical system comprising a spatial light modulator (380), a light source, a Fourier transform lens, a viewing system (320, 330) and a processing system. The spatial light modulator is arranged to display holographic data in the Fourier domain, illuminated by the light source. The Fourier transform lens is arranged to produce a 2D holographic reconstruction in the spatial domain (310) corresponding to the holographic data. The viewing system is arranged to produce a virtual image (350) of the 2D holographic reconstruction. The processing system is arranged to combine the Fourier domain data representative of a 2D image with Fourier domain data representative of a phase only lens to produce first holographic data, and provide the first holographic data to the optical system to produce a virtual image.
摘要:
A method of producing a phase-only computer generated hologram for a pixellated Spatial Light Modulator device (200) supporting a discrete number of modulation levels and having an integrated layer of liquid crystal material above a silicon circuit, the method comprising: determining punctuated replay coordinates in a Fourier transform plane (202) of the SLM (200); using said coordinates for calculating the size in pixels of a base cell; evaluating a holographic base cell pattern using a phase quantisation procedure and replicating said base cell in the plane of the said hologram device 200) until the entire aperture of the hologram device is filled.
摘要:
An electroholographic display system (300, 700) includes: a coherent light source (330, 730); a spatial light modulator (SLM) (320, 720) that modulates a coherent collimated light beam; and a processor and driver unit (310, 710) that generates hologram data and applies appropriate voltages to the pixels of the SLM to modulate the coherent collimated light beam with the hologram data and to suppress a zeroth order component of the modulated light beam at an image plane where the holographic image is reproduced. The processor and driver unit suppresses the zeroth order component of the modulated light beam by selecting the voltages to apply to the pixels of the SLM to cause a first group of pixels to provide a phase shift of 180 degrees to first portions of the collimated light beam with respect to portions of the collimated light beam modulated by a second group of pixels.
摘要:
A method of forming an image comprising providing a device for imparting respective phase-shifts to different regions of an incid¬ ent wavefront, wherein the phase shifts give rise to an image in a replay field, and causing zero-order light to be focused into a re¬ gion between the replay field and the device.
摘要:
A display system (300) comprising an optical system and a processing system. The optical system comprising a spatial light modulator (380), a light source, a Fourier transform lens, a viewing system (320, 330) and a processing system. The spatial light modulator is arranged to display holographic data in the Fourier domain, illuminated by the light source. The Fourier transform lens is arranged to produce a 2D holographic reconstruction in the spatial domain (310) corresponding to the holographic data. The viewing system is arranged to produce a virtual image (350) of the 2D holographic reconstruction. The processing system is arranged to combine the Fourier domain data representative of a 2D image with Fourier domain data representative of a phase only lens to produce first holographic data, and provide the first holographic data to the optical system to produce a virtual image.
摘要:
A printing device (106) includes a laser source and a LCOS-SLM (Liquid Crystal on Silicon Spatial Light Modulator). The printing device generates a laser control signal and a LCOS-SLM control signal. The laser source (110) generates a plurality of incident laser beams based on the laser control signal. The LCOS-SLM (112) receives the plurality of incident laser beams, modulates the plurality of incident laser beams based on the LCOS-SL M control signal to generate a plurality of holographic wavefronts (214,216) from the modulated plurality of incident laser beams. Each holographic wavefront forms at least one corresponding focal point. The printing device cures a surface layer or sub-surface layer (406) of a target material (206) at interference points of focal points of the plurality of holographic wavefronts. The cured surface layer of the target material forms a three-dimensional printed content.
摘要:
A display system comprising a first plurality of pixels, a second plurality of pixels, a first Fourier transform lens and a second Fourier transform lens. The first plurality of pixels is arranged to display first holographic data corresponding to a first holographic reconstruction and receive light of a first wavelength. The a second plurality of pixels is arranged to display second holographic data corresponding to a second holographic reconstruction and receive light of a second wavelength. The first Fourier transform lens is arranged to receive spatially modulated light having a first wavelength from the first plurality of pixels and perform an optical Fourier transform of the received light to form the first holographic reconstruction at a replay plane, wherein the first holographic reconstruction is formed of light at the first wavelength. The second Fourier transform lens is arranged to receive spatially modulated light having a second wavelength from the second plurality of pixels and perform an optical Fourier transform of the received light to form the second holographic reconstruction at the replay plane, wherein the second holographic reconstruction is formed of light at the second wavelength. The optical path length from the first Fourier transform lens to the replay plane is not equal to the optical path length from the second Fourier transform lens to the replay plane.