Abstract:
Disclosed herein is a pattern safety device for preventing interference between patterns. In detail, a separately partitioned space is defined in an adhesion portion, which is formed on a plurality of patterns on the surface of a substrate so that a circuit element is placed on the adhesion portion, thus preventing interference between the patterns.
Abstract:
The invention relates to a method for partially stripping a defined area of a conductive layer from a substrate (1). For this purpose, in a first method step, the area is firstly subdivided into regions (4) by means of a laser beam (3). For this purpose, the laser beam parameters are set in such a way that only the conductive layer is removed, without the underlying substrate (1) that carries the conductive layer also being impaired at the same time in the process. For this purpose, each of these strip-shaped regions (4) is thermally insulated from the adjoining regions (4) of the conductive layer by the introduction of a linear cutout (5) along a respective periphery of the regions (4). For this purpose, the cutouts (5) are introduced as substantially parallel straight lines that form an acute angle (α) of 22.5° with the principal axes (X, Y) determined by the known course of the conductor track (2). In this way, a parallel course of the cutouts (5) with respect to a conductor track (2) is approximately precluded in practice, such that a thermal energy input parallel to the conductor track (2) during the process of stripping away the region (4) adjacent to the conductor track (2) and thus damage to the latter are avoided. In a subsequent method step, the regions (4) are removed upon simultaneous heating by means of a fluid flow, the orientation of which relative to the cutouts (5) is set in such a way that the fluid flow impinges on the cutouts (5) neither parallel nor orthogonally.
Abstract:
A mask for producing a printed circuit board is defined in which the conductor elements of the printed circuit pattern are delineated by a constant width etch band (20). This means that all conductors (3a, 3b, 9) are separated from neighbouring areas of conductive material (22) by the same distance. Thus etch rates across the printed circuit pattern do not vary according to the separation of the conductors (3a, 3b, 9).
Abstract:
The present invention is to provide a printed wiring board which can certainly prevent damage of conductive pattern caused by the terminal. The printed wiring board has a board, a conductive pattern, a through-hole and a non-conductive area. A lead wire of resistance mounted on the printed wiring board is inserted into the through-hole 4. The lead wire projects from a surface of the board, and is bent close to the surface. The non-conductive area is formed into a fan-shaped shape enlarging toward a tip of the lead wire from a center of the through-hole. Since the bent lead wire is arranged on the non-conductive area, the non-conductive area can prevent damage of the conductive pattern which is caused by touching the lead wire to the conductive pattern.
Abstract:
The present invention is to provide a printed wiring board which can certainly prevent damage of conductive pattern caused by the terminal. The printed wiring board has a board, a conductive pattern, a through-hole and a non-conductive area. A lead wire of resistance mounted on the printed wiring board is inserted into the through-hole 4. The lead wire projects from a surface of the board, and is bent close to the surface. The non-conductive area is formed into a fan-shaped shape enlarging toward a tip of the lead wire from a center of the through-hole. Since the bent lead wire is arranged on the non-conductive area, the non-conductive area can prevent damage of the conductive pattern which is caused by touching the lead wire to the conductive pattern.