摘要:
Various non-limiting embodiments of the present disclosure relate to ophthalmic devices comprising photochromic materials comprising a reactive substituent. For example, the present disclosure contemplates ophthalmic devices comprising photochromic materials, such as photochromic naphthopyrans and indeno-fused naphthopyrans having a reactive substituent comprising a reactive moiety linked to the photochromic naphthopyran by one or more linking groups. In certain non-limiting embodiments, the reactive moiety comprises a polymerizable moiety. In other non-limiting embodiments, the reactive moiety comprises a nucleophilic moiety. Other non-limiting embodiments of the present disclosure relate to methods of making the photochromic ophthalmic device, wherein the photochromic ophthalmic devices comprise the photochromic naphthopyrans described herein.
摘要:
A primer coating composition is provided for an optical article capable of forming a coating layer having excellent impact resistance, abrasion resistance, adhesion and high refractive index to an optical base material, having high refractive index, specifically a plastic lens without occurrence of poor appearance such as ununiformity, cloudiness, etc. and regardless of the materials of the plastic lens. A primer composition for an optical article may comprises urethane resin having a polycarbonate-derived skeleton, polyester resin, inorganic oxide fine particles and water, and water-soluble organic solvent, if necessary.
摘要:
The present invention relates to a method of producing color change in a substrate. The substrate includes an activatable colorant and a region that is heated prior to activating the activatable colorant. The substrate is exposed to electromagnetic radiation producing a first activated color region in the heated region and a second activated color region in a non heated region. The first activated color region appears in a different shade than the second activated color region.
摘要:
Objects are to provide an infrared-sensitive color developing composition which develops colors in a high density by means of infrared exposure and does not significantly discolor when aged, to provide a lithographic printing plate precursor which has extremely excellent plate-inspecting properties and favorable storage stability and is capable of maintaining favorable color-developing properties and a plate making method for a lithographic printing plate in which the lithographic printing plate precursor is used, and to provide a new compound that can be preferably used as an infrared-sensitive color developer. An infrared-sensitive color developing composition of the present invention includes a compound represented by Formula (1) (Component A). In addition, the compound in the present invention is represented by Formula (1).