Abstract:
A method for producing a composition comprising nanoparticles of a biologically active compound, comprising the step of: dry milling a solid biologically active compound and a millable grinding compound in a mill comprising a plurality of milling bodies, for a time period sufficient to produce a solid dispersion comprising nanoparticles of the biologically active compound dispersed in an at least partially milled grinding compound is described as are various compositions produced using such methods.
Abstract:
The present invention relates to improved therapeutically active nanocomposite microstructure compositions, including nanoparticle compositions and nanoparticle preparations. Preferred embodiments include nanoparticle compositions comprising nanoparticles of a therapeutically active agent dispersed in a carrier matrix. The invention also relates to a method for preparing said compositions and preparations using solid-state mechanochemical synthesis. Further, it relates to therapeutic products produced using said compositions and to methods of treatment using the compositions.
Abstract:
An electroluminescence device having an emission layer comprising a single organic compound layer between a cathode and an anode. The single layer may comprise an emitter component on a single polymer chain of covalently linked (co)-polymer sections Y1, optionally in combination with Y2, and/or Y3, or different polymer chains Y1, optionally in combination with Y2, and/or Y3 blended together. Each of the (co)-polymer contains a spacer unit and a carrier transporting component and optionally an emitter moiety.
Abstract:
An electroluminescence device having an emission layer comprising a single organic compound layer between a cathode and an anode. The single layer may comprise an emitter component on a single polymer chain of covalently linked (co)-polymer sections Y1, optionally in combination with Y2, and/or Y3, or different polymer chains Y1, optionally in combination with Y2, and/or Y3 blended together. Each of the (co)-polymer contains a spacer unit and a carrier transporting component and optionally an emitter moiety.
Abstract:
The present invention relates to an organic electroluminescent device comprising a pair of electrodes forming an anode and cathode, and one or more layers of organic compound arranged between the pair of electrodes, wherein the organic compound layer comprises heptaazaphenalene derivatives of formula (1). The present invention also relates to the said compounds.
Abstract:
The invention provides a process for increasing the melt flow index of a polyolefin, the process comprising using a melt mixing device to melt mix the polyolefin in contact with oxygen and a transition metal catalyst having a redox potential ranging from 0 to 2 volts, wherein oxygen is introduced to the melt mixing device, and wherein the transition metal catalyst in contact with the polyolefin forms at least part of a component of the melt mixing device.