摘要:
A method of encapsulating a sensor device includes providing at least one sensor device that has a sensor portion on a substrate. An exclusionary zone is formed above an upper surface of the sensor portion. An outer boundary is formed on or about the sensor device with the outer boundary encircling the exclusionary zone. A mold material is deposited into a volume defined in part by the sensor device, the exclusionary zone, and the outer boundary to encapsulate portions of the sensor device. The exclusionary zone in one embodiment is an inner boundary that is formed on the sensor portion. The inner boundary encircles a portion of the upper surface of the sensor portion. The exclusionary zone in another embodiment is a selectively removable material deposited on the upper surface of the sensor portion. The selectively removable material occupies a space above a portion of the upper surface.
摘要:
A Li-ion battery in one embodiment includes a lithium based compound in a cathode, a first porous silicon portion in an anode, and a layer of atomic layer deposited (ALD) alumina coating the first porous silicon portion and contacting the cathode.
摘要:
A Li-ion battery in one embodiment includes a lithium based compound in a cathode, a first porous silicon portion in an anode, and a layer of atomic layer deposited (ALD) alumina coating the first porous silicon portion and contacting the cathode.
摘要:
In one embodiment, a method of opening a passageway to a cavity includes providing a donor portion, forming a heating element adjacent to the donor portion, forming a first sacrificial slab abutting the donor portion, wherein the donor portion and the sacrificial slab are a shrinkable pair, forming a first cavity, a portion of the first cavity bounded by the first sacrificial slab, generating heat with the heating element, forming a first reduced volume slab from the first sacrificial slab using the generated heat and the donor portion, and forming a passageway to the first cavity by forming the first reduced volume slab.
摘要:
A sensor, in particular for the spatially resolved detection, includes a substrate, at least one micropatterned sensor element having an electric characteristic whose value varies as a function of the temperature, and at least one diaphragm above a cavity, the sensor element being disposed on the underside of the at least one diaphragm, and the sensor element being contacted via connecting lines, which extend within, on top of or underneath the diaphragm. In particular, a plurality of sensor elements may be formed as diode pixels within a monocrystalline layer formed by epitaxy. Suspension springs, which accommodate the individual sensor elements in elastic and insulating fashion, may be formed within the diaphragm.
摘要:
A micro-structured reference element for use in a sensor having a substrate and a dielectric membrane. The reference element has an electrical property which changes its value on the basis of temperature. The reference element is arranged with respect to the substrate so that the reference element is (i) electrically insulated from the substrate, and (ii) thermally coupled to the substrate. The reference element is arranged on the underside of the dielectric membrane. The reference element and side walls of the substrate define a circumferential cavern therebetween, which is also bounded by the dielectric membrane, arranged between them. The dielectric membrane is connected to the substrate. A surface area of the reference element which is covered by the dielectric membrane is greater than or equal to 10% and less than or equal to 100% of the possible coverable surface area. A surface of the cavern which is covered by the dielectric membrane is greater than or equal to 50% and less than or equal to 100% of the possible coverable surface. An edge of the reference element which faces the dielectric membrane has greater than or equal to 50% and less than or equal to 100% of its extent contacted by the dielectric membrane. Sections of the side walls of the cavern which face the dielectric membrane have greater than or equal to 50% and less than or equal to 100% of the possible size contacted by the dielectric membrane.
摘要:
A piezoresistive micromechanical sensor component includes a substrate, a seismic mass, at least one piezoresistive bar, and a measuring device. The seismic mass is suspended from the substrate such that it can be deflected. The at least one piezoresistive bar is provided between the substrate and the seismic mass and is subject to a change in resistance when the seismic mass is deflected. The at least one piezoresistive bar has a lateral and/or upper and/or lower conductor track which at least partially covers the piezoresistive bar and extends into the region of the substrate. The measuring device is electrically connected to the substrate and to the conductor track and is configured to measure the change in resistance over a circuit path which runs from the substrate through the piezoresistive bar and from the piezoresistive bar through the lateral and/or upper and/or lower conductor track.
摘要:
A sensor includes at least one micro-patterned diode pixel that has a diode implemented in, on, or under a diaphragm, and the diaphragm in turn being implemented above a cavity. The diode is contacted via supply leads that are implemented at least in part in, on, or under the diaphragm, and the diode is implemented in a polycrystalline semiconductor layer. The diode is implemented by way of two low-doped diode regions or at least one low-doped diode region. At least parts of the supply leads are implemented by way of highly doped supply lead regions of the shared polycrystalline semiconductor layer.
摘要:
A cost-effective technology for implementing a micromechanical component is provided, whose layer construction includes at least one diaphragm on the upper side and at least one counter-element, a hollow space being formed between the diaphragm and the counter-element, and the counter-element having at least one through hole to a back volume. This back volume is formed by a sealed additional hollow space underneath the counter-element and is connected to the upper-side of the layer construction by at least one pressure equalization opening. This component structure permits the integration of the micromechanical sensor functions and evaluation electronics on one chip and is additionally suitable for mass production.
摘要:
An inertial sensor, having a field effect transistor which includes a gate electrode (9), a source electrode (3a′,3a″,3a′″), a drain electrode (3b′,3b″,3b′″) and a channel area (4) situated between the source electrode (3a′,3a″,3a′″) and the drain electrode (3b′,3b″,3b′″) and whose gate electrode (9) is situated at a distance above the channel area (4). The gate electrode (9) is designed and situated to be stationary and the channel area (4) is designed and situated to be movable. Furthermore, the present invention also relates to a method for manufacturing a motion sensor of this type.