摘要:
A method of forming a plurality of monodisperse nanoparticles. Each of the nanoparticles comprises a nanocrystalline inorganic core and at least one outer coating comprising an ionizable stabilizing material that substantially covers the core. The method comprises the steps of: combining a nonpolar aprotic organic solvent, an oxidant, and a first surfactant; providing at least one organometallic compound to the combined nonpolar aprotic organic solvent, oxidant, and first surfactant; and heating the combined nonpolar aprotic organic solvent, oxidant, first surfactant, and the at least one organometallic compound under an inert gas atmosphere to a first temperature in a range from about 30° C. to about 400° C. for a first time interval, thereby reacting the at least one organometallic compound and the oxidant in the presence of the first surfactant and the nonpolar aprotic organic solvent to form a plurality of nanoparticles, each of the plurality of nanoparticles comprising a nanocrystalline inorganic core and at least one outer coating comprising the first surfactant. The at least one organometallic compound comprises a metal and at least one ligand.
摘要:
A cationic nanoparticle having an inorganic core and at least one outer cationic coating is described. The at least one outer cationic coating substantially covers the inorganic core and has at least one organo-silane. The organo-silane includes: —Si(R1)3 wherein R1independently at each occurrence is an alkoxy group, a hydroxyl group, a halide, an alkyl group, or hydrogen, and wherein at least one R1 of the three R1s is not an alkyl group. A nanocomplex having a cationic nanoparticle and at least one oligonucleotide attached to the cationic nanoparticle is also described. Methods of making cationic nanoparticles and nanocomplexes are also described. Also described are methods of delivering an oligonucleotide into a cell in-vitro, to a subject in-vivo, and monitoring the delivery of an oligonucleotide.
摘要:
Disclosed herein are polyetherimide compositions comprising structural units of the formula: derived from at least one benzimidazole diamine, wherein R1 and R2 are independently selected from hydrogen and C1–C6 alkyl groups; “A” comprises structural units of the formulae: or mixtures of the foregoing structural units; wherein “D” is a divalent aromatic group, R3 and R10–R12 are independently selected from hydrogen, halogen, and C1–C6 alkyl groups; “q” is an integer having a value of 1 up to the number of positions available on the aromatic ring for substitution; and “W” is a linking group; and “B” comprises substituted and unsubstituted arylene groups having from about 6 to about 25 carbon atoms. Methods for producing the polyetherimide compositions are also disclosed herein.
摘要翻译:本文公开了包含下式结构单元的聚醚酰亚胺组合物:衍生自至少一种苯并咪唑二胺,其中R 1和R 2独立地选自氢和C 1 -C 6烷基, C 1 -C 6烷基; “A”包括下列结构单元:或前述结构单元的混合物; 其中“D”是二价芳族基团,R 3和R 10 -R 12独立地选自氢,卤素和C 1-4烷基, C 1 -C 6烷基; C 1 -C 6烷基; “q”是具有值为1的整数,直到芳环上取代的可用位置数; 和“W”是连接基团; “B”包括具有约6至约25个碳原子的取代和未取代的亚芳基。 本文还公开了制备聚醚酰亚胺组合物的方法。
摘要:
Copolyetherimides compositions having high glass transition temperatures and outstanding ductility are presented. The copolyetherimides having Mw of at least 40,000 comprising isomeric bis(phthalimide) structural units within a relatively narrow range of isomer proportions exhibited Tgs of at least 240° C. and outstanding Notched Izod values. The copolyetherimides comprise oxydianiline residues and structural units of the formulas (I) and (II) (III). The copolyetherimides are characterized by a mole percentage of structural units derived from 4,4′-biphenol in a range from about 55% to about 85% of all bisphenol-derived structural units present in the copolyetherimide composition; a mole percentage of structural units derived from bisphenol A in a range from about 45% to about 15% of all bisphenol-derived structural units present in the copolyetherimide composition; and a total mole percentage of structural units derived from bisphenol A or 4,4′-biphenol of at least 95% of all bisphenol-derived structural units present in the copolyetherimide composition.
摘要:
Polyether polymers, such as polyetherimides, are prepared by the reaction of a dihydroxy-substituted aromatic hydrocarbon alkali metal salt, such as bisphenol A disodium salt, with a bis(N-(chlorophthalimido))aromatic compound, such as 1,3- and/or 1,4-bis(N-(4-chlorophthalimido))benzene, in a solvent such as o-dichlorobenzene and in the presence of a phase transfer catalyst such as a hexaalkylguanidinium chloride. Several embodiments may be employed to improve the method. They comprise employing substantially dry reagents, employing a high solids level in solvent, beginning with an excess of bis(N-(chlorophthalimido))-aromatic compound and incrementally adding alkali metal salt, employing alkali metal salt of small particle size, and using reagents of high purity.
摘要:
An aspect of the invention includes a nanoparticle including a substantially monodisperse inorganic core with a surface and a coating substantially covering the surface of the substantially monodisperse inorganic core, wherein the coating includes of at least coating structure I, II, or III wherein the nanoparticle is substantially non-agglomerated and has diameter in a range from about 1 nm to about 100 nm. An aspect of the invention also encompasses a method of making a substantially non-agglomerated nanoparticle having a diameter in a range from about 1 nm to about 100 nm including a substantially monodisperse inorganic core with a surface and a coating substantially covering the surface of the substantially monodisperse inorganic core, wherein the coating comprises coating structure I, II, or III. An aspect of the invention also encompasses various methods of using the substantially non-agglomerated nanoparticle having a diameter in a range from about 1 nm to about 100 nm including a substantially monodisperse inorganic core with a surface and a coating substantially covering the surface of the substantially monodisperse inorganic core, wherein the coating comprises coating structure I, II, or III.
摘要:
A contrast agent for magnetic resonance imaging having a plurality of nanoparticles. Each of the nanoparticles has: a signal generating core having a diameter of up to 10 nm; at least one organic layer of at least one of a polymer, a monomer, and a surfactant; and a water soluble outer shell of at least one of a polymer, a monomer, and a ligand. The organic layer is adsorbed upon and substantially surrounds and stabilizes the signal generating core. The water soluble outer shell solubilizes and provides biocompatibility for each of the nanoparticles. The contrast agents provide enhanced relaxivity, high signal-to-noise ratios, and targeting abilities. In addition, the contrast agents possess resistance to agglomeration, controlled particle size, blood clearance rate, and biodistribution. Methods of making such contrast agents and nanoparticles are also disclosed.