摘要:
An organic light emitting display apparatus that includes a substrate, an organic light emitting unit formed on the substrate, a reflection member disposed on a non-light emitting region of the organic light emitting unit, and a sealing member that seals the organic light emitting unit. The organic light emitting display apparatus can function as a display apparatus or a mirror.
摘要:
An organic light-emitting display apparatus includes a substrate, a plurality of organic light-emitting diodes on the substrate, and a plurality of capacitors located next to at least one side of one of the organic light-emitting diodes. The capacitors are arranged inside trenches within the substrate.
摘要:
A thin film transistor that does not deform or exfoliate due to thermal or mechanical stress, a flat panel display having the same, and a method manufacturing the same, the thin film transistor including a substrate, a patterned buffer layer disposed on the substrate, a patterned active layer disposed on the buffer layer, a gate electrode insulated from the active layer, and a source electrode and a drain electrode that contact the active layer and are insulated from the gate electrode.
摘要:
Provided are a photosensor, a photosensor apparatus including the photosensor, and a display apparatus including the photosensor apparatus. The photosensor includes a substrate; a first light receiving layer which is formed on the substrate and comprises an oxide; a second light receiving layer which is connected to the first light receiving layer and comprises an organic material; and first and second electrodes which are respectively connected to the first and second light receiving layers.
摘要:
A thin film transistor having a transformed region that provides the same result as patterning a semiconductor layer, a flat panel display having the thin film transistor and a method for manufacturing the thin film transistor and the flat panel display are disclosed. The thin film structure includes a gate electrode, a source and a drain electrode, each insulated from the gate electrode and an organic semiconductor layer coupled to the source electrode and the drain electrode. The organic semiconductor layer includes the transformed region having a crystal structure distinguished from crystal structures of regions around the channel region.
摘要:
A flexible flat panel display where nanoparticles are used for the active layer of the TFTs and the substrate is flexible and can be manufactured at room temperature, a flat panel display device having the same, a method of manufacturing a TFT, a method of manufacturing a flat panel display device, and a method of manufacturing a donor sheet. In making the TFTs in the display, a donor sheet is used to transfer the nanoparticles from the sheet to the substrate. The thin film transistor is placed on a substrate and includes a channel region which has at least one P-type or N-type nanoparticle arranged in a lengthwise direction, wherein the lengthwise direction of the P-type or N-type nanoparticles is parallel to a P-type or an N-type nanoparticle line partitioned off on the substrate.
摘要:
A flexible flat panel display where nanoparticles are used for an active layer and the substrate is a flexible plastic, a method of manufacturing the same, a method of manufacturing a thin film transistor (TFT) using the donor sheet, and a method of manufacturing a flat panel display device using the donor sheet. In making the TFTs in the display, a donor sheet is used to transfer the nanoparticles from the sheet to the substrate. The donor sheet can be manufactured at room temperature. The donor sheet has a base film, and a transfer layer being disposed at one side of the base film and transferable, wherein the transfer layer has a plurality of nanoparticles which are arranged to be approximately parallel to one another.
摘要:
A flexible flat panel display where nanoparticles are used for the active layer of the TFTs and the substrate is flexible and can be manufactured at room temperature, a flat panel display device having the same, a method of manufacturing a TFT, a method of manufacturing a flat panel display device, and a method of manufacturing a donor sheet. In making the TFTs in the display, a donor sheet is used to transfer the nanoparticles from the sheet to the substrate. The thin film transistor is placed on a substrate and includes a channel region which has at least one P-type or N-type nanoparticle arranged in a lengthwise direction, wherein the lengthwise direction of the P-type or N-type nanoparticles is parallel to a P-type or an N-type nanoparticle line partitioned off on the substrate.
摘要:
Provided is a flat panel display in which no stripes appear on a screen, thereby improving image quality. The flat panel display has a matrix-type array of sub-pixels, each of which includes a driving thin film transistor, a first electrode driven by the driving thin film transistor, and a second electrode driving a light emission unit together with the first electrode. The driving thin film transistor includes semiconductor channels which are derived from a semiconductor layer. Heterogeneous straight lines are separated from each other on the semiconductor layer. An imaginary line connecting the semiconductor channels of one column is not parallel to the heterogeneous straight lines.
摘要:
A method for fabricating a thin film transistor. An active layer is first formed on a substrate, then a first insulating layer is formed on the active layer. Next, a gate electrode pattern is formed on the first insulating layer and an LDD region is formed by lightly doping ions in the active layer using the gate electrode pattern as a mask. A polymer layer is formed on a surface of the gate electrode pattern using an electrochemical polymerizing process, and source and drain contact layers are formed by densely doping ions in the active layer using the gate electrode pattern deposited with the polymer layer. A second insulating layer is then formed on a surface of the first insulating layer while covering the gate electrode pattern. Contact holes are formed through the insulating layers, and metal material is sputtered in the contact holes to form the source and drain electrodes.