Abstract:
A thermoforming apparatus is described herein. The apparatus may include a pressure mechanism, a thermal device, a plurality of individually actuatable pins, and/or a pin actuation mechanism. The pressure mechanism may create a force against a die surface. The thermal device may change a thermal state of a material forced by the pressure mechanism against the die surface. The plurality of individually actuatable pins may form the die surface. The pin actuation mechanism may be connected to the plurality of actuatable pins and/or may actuate the pins. This apparatus improves on prior solutions in many ways. For example, embodiments of the thermoforming apparatus may require significantly less time between different molds than previous thermoforming machines and 3D printers.
Abstract:
An out-of-autoclave compression molding system is disclosed herein. The system includes a mold, a vacuum bag, a vacuum valve, a pressure plate, and a pressure valve. The mold includes a concave feature and a flange. The vacuum bag covers at least the concave feature. The pressure plate is positioned outside the vacuum bag clamped to the flange and on the mold to form a pressure cavity between the vacuum bag and the plate. An out-of-autoclave compression molding process is also described. The process includes pressing a composite material and thermoset resin into a mold having a flange; surrounding the mold, composite material, and resin with a vacuum bag; sealing and evacuating the vacuum bag; clamping a pressure plate to the flange; and pressurizing the cavity.
Abstract:
A parking brake and anti-theft apparatus as described herein may include a brake assembly, a linear actuator and a plurality of locking pins. The brake assembly may include a rotor plate. The rotor plate may include a plurality of openings in and/or through the rotor plate. The plurality of locking pins may be extendable by the linear actuator. The pins may be aligned perpendicular to a face of the rotor plate such that, as at least one of the pins is disposed over one of the plurality of openings and the actuator extends the plurality of locking pins, the pin disposed over the one of the plurality of openings passes into the one of the plurality of openings. In various embodiments, the plurality of pins may comprise a length equal to or greater than a length between two adjacent openings of the plurality of openings.
Abstract:
A thermoforming apparatus is described herein. The apparatus may include a pressure mechanism, a thermal device, a plurality of individually actuatable pins, and/or a pin actuation mechanism. The pressure mechanism may create a force against a die surface. The thermal device may change a thermal state of a material forced by the pressure mechanism against the die surface. The plurality of individually actuatable pins may form the die surface. The pin actuation mechanism may be connected to the plurality of actuatable pins and/or may actuate the pins. This apparatus improves on prior solutions in many ways. For example, embodiments of the thermoforming apparatus may require significantly less time between different molds than previous thermoforming machines and 3D printers.
Abstract:
A vehicle is described herein that includes a body structure such as a windshield and/or a windshield frame, a compartment such as a passenger compartment, one or more body panels around the compartment, and an at least partially floating cover, such as a roof, disposed over the compartment. The floating cover includes one or more body structure mounts and an overhang extending from the body structure over the compartment to an aft portion of the compartment. Other similar embodiments include features such as support structures, support structure mounts that mount the floating cover to the support structures, and various aerodynamic features incorporated into the floating cover. For example, some embodiments include roll bars and roll bar mounts, aerodynamic arcs, and aerodynamically continuous surfaces.
Abstract:
An electronic gear shifter is described herein that provides tactile feedback imitating the tactile feedback generated by a manual transmission shifter. The shifter includes a tactile feedback mechanism having a base, a pivot through the base, one or more springs coupled to the base, and first and second detents. The base rotates about the pivot, whereas the springs resist rotations of the base from, and return the base to, and equilibrium position. The first detent resists rotation of the base from the equilibrium position. The second detent resists further rotation of the base past the first detent and away from the equilibrium position. Rotation of the base past the first and second detents imitates manual transmission tactile feedback, and rotation of the base past the second detent also closes one or more of the electronic switches.
Abstract:
A vehicle energy storage system is disclosed herein that addresses at least some of the issues described above. The system includes an energy storage compartment with an access mechanism. Safety mechanisms are provided that ensure energy cartridges are properly installed in the compartment, that the access mechanism properly closes, and that notify a user when the cartridges are improperly installed and/or are faulty.
Abstract:
The example embodiments disclosed herein relate to application integration techniques and, more particularly, to application integration techniques built around the publish-and-subscribe model (or one of its variants). In certain example embodiments, a publishing application, and first and second broker clusters are provided. Each broker cluster comprises a plurality of brokers, and each broker is configured to relay messages from the publishing application to at least one subscribing application. A composite cluster connection is associated with the publishing application, and cluster connections are associated with the composite cluster connection. The message generated by the publishing application is sent to the broker cluster in accordance with a user-defined composite policy. The message is routed from the composite cluster connection to at least one cluster connection based on a first policy layer. The messaging is routed from the at least one cluster to at least one broker based on a second policy layer.
Abstract:
An exchangeable electric vehicle battery receptacle, kiosk is disclosed herein. The kiosk includes a receptacle, a bell crank and solenoid that lock a battery in the receptacle, and circuitry that dispenses the battery. The bell crank includes a first arm extending into the receptacle and a second arm coupled to an extension spring that is coupled to a fixed point on the kiosk. The battery includes a form factor dimensioned to fit at least partially around the first arm. The solenoid has an armature and is positioned adjacent to the second arm. The armature fixes the bell crank and fixes the extension spring in an extended state, thereby locking the battery in the receptacle slot. The circuitry retracts the armature into the solenoid. A retraction force on the second arm by the extension spring rotates the bell crank, at least partially dispensing the exchangeable battery from the receptacle slot.
Abstract:
A vehicle is described herein that includes a unibody vehicle frame, a vehicle body panel, and one or more monolithic tripartite support mechanisms, which mechanisms provide structural support for at least three frame-mounted vehicle components. Each support mechanism includes a windshield support arm, a side view mirror support arm, and a body panel fixing plate. The side view mirror support arm extends from the windshield support, and the body panel fixing plate extends from the windshield support arm, the side-view mirror support arm, or both. Additionally, the windshield support arm holds a windshield to the vehicle, the side view mirror support arm holds a side view mirror to the vehicle, and the fixing plate secures the body panel to the frame.