Abstract:
A method is described that involves detecting one or more images appearing on a pixilated sensor of respective one or more fixed markers. The pixilated sensor is within a handheld device. For each of the images, determining its location on the sensor with the handheld device's electronic circuitry. Translating the images' determined locations into a pointed to location on a display, or proximate to said display, wherein the handheld device transmits information derived from the determining.
Abstract:
A planar light wave circuit may be formed with a pair of waveguides arranged in close proximity to one another. At least one of the waveguides may be segmented. Through segmentation, the average mode-field diameter may be adjusted. Controlling the average mode-field diameter enables precise control over the coupling characteristics.
Abstract:
Multiple Bragg gratings are fabricated in a single planar lightwave circuit platform. The gratings have nominally identical grating spacing but different center wavelengths, which are produced using controlled photolithographic processes and/or controlled doping to control the effective refractive index of the gratings. The gratings may be spaced closer together than the height of the UV light pattern used to write the gratings.
Abstract:
A waveguide that is operative to produce a reflected optical signal having a spectral profile corresponding to a product of a spectral profile of an input optical signal and a predetermined complex-valued spectral filtering function wherein the waveguide includes a plurality of spatially distinct subgratings each possessing a periodic array of diffraction elements. The subgratings are situated and configured based on the predetermined complex-valued spectral filtering function.
Abstract:
According to one embodiment, a system includes a handheld device having a pixelated sensor, an optical filter for passing a predetermined frequency band of radiation to the sensor and a transmitter, an electronic equipment having a display, and at least two spaced-apart markers, where each of which are positioned proximate to the display. The markers provide radiation at the frequency band passed by the optical filter. The handheld device includes a processor coupled to receive image data of the markers from the sensor for computing coordinate data from the image data. The coordinate data requires less data than the image data. The processor is coupled to the transmitter to transmit the coordinate data to the electronic equipment. Other methods and apparatuses are also described.
Abstract:
A tunable filter may be utilized to successively tune to different wavelengths. As each wavelength of the wavelength division multiplexed signal is extracted, it may be successively power monitored. Thus, power monitoring may done without requiring separate power monitors for each channel. This results in considerable advantages in some embodiments, including reduced size, reduced complexities in fabrication, and reduced yield issues in some embodiments.
Abstract:
A method is described that involves identifying one or more images of respective one or more fixed markers. Each marker is positioned on or proximate to a display. The images appear on a pixilated sensor within a handheld device. The method also involves determining a location on, or proximate to, the display where the handheld device was pointed during the identifying. The method also involves sending from the handheld device information derived from the identifying of the one or more images of respective one or more fixed markers. The method also involves triggering action taken by electronic equipment circuitry in response to the handheld device's sending of a signal to indicate the action is desired.
Abstract:
A method is described that involves identifying one or more images of respective one or more fixed markers. Each marker is positioned on or proximate to a display. The images appear on a pixilated sensor within a handheld device. The method also involves determining a location on, or proximate to, the display where the handheld device was pointed during the identifying. The method also involves sending from the handheld device information derived from the identifying of the one or more images of respective one or more fixed markers. The method also involves triggering action taken by electronic equipment circuitry in response to the handheld device's sending of a signal to indicate the action is desired.
Abstract:
An optical phased array transmitter/receiver includes a plurality of waveguides each including an optical fiber and a light source coupled to the fibers in the waveguides. At least one grating is coupled to the fiber of each waveguide and at least one phase shifter coupled to the fiber of at least one waveguide. The phase shifter controls a phase profile of light passing through the fiber to control a profile of a laser beam reflected at the grating. The gratings reflect light passing through the fibers outside of the optical coder to form a laser beam shaped and directed by the grating and phase shifters. Further, a detector is coupled to the waveguides that is enabled to receive light reflected off the gratings. Other embodiments are described and claimed
Abstract:
A mounting platform provides support and packaging for one or more fiber Bragg gratings and electronic circuitry (e.g., heaters, coolers, piezoelectric strain providers, temperature and strain sensors, feedback circuitry, control loops), which may be printed on or on the mounting platform, embedded in the mounting platform, or may be an “off-board” chip solution (e.g., the electronic circuitry may be attached to the mounting platform, but not formed on or defined on the mounting platform). The fiber Bragg gratings are held in close proximity to the electronic circuitry, which applies local and global temperature and/or strain variations to the fiber Bragg gratings to, for example, stabilize and/or tune spectral properties of the fiber Bragg gratings so that spatial variations in the fiber Bragg gratings that result from processing and manufacturing fluctuations and tolerances can be compensated for.