Abstract:
Ice skateboards, ice skateboard conversion kits, and methods for converting a skateboard to an ice skateboard are presented. An ice skateboard or an ice skateboard conversion kit may include four blades. Each blade may include an elongate sharp lower edge and an opening for pivotally mounting the blade on one of four skateboard axle ends. Eight spacer bushings each may include a bore for pivotally mounting the spacer bushing on one of the axle ends. Lengths of two of the spacer bushings may be configured to dispose at least one of the blades along a middle third of one of the axle ends when the blade is pivotally mounted to the axle end between the two spacer bushings.
Abstract:
Methods and apparatus for calibrating a plurality of gas flows in a substrate processing system are provided herein. In some embodiments, a substrate processing system may include a cluster tool comprising a first process chamber and a second process chamber coupled to a central vacuum transfer chamber; a first flow controller to provide a process gas to the first process chamber; a second flow controller to provide the process gas to the second process chamber; a mass flow verifier to verify a flow rate from each of the first and second flow controllers; a first conduit to selectively couple the first flow controller to the mass flow verifier; and a second conduit to selectively couple the second flow controller to the mass flow verifier.
Abstract:
Embodiments of the present invention generally relate to methods of controlling gas flow in etching chambers. The methods generally include splitting a single process gas supply source into multiple inputs of separate process chambers, such that each chamber processes substrates under uniform processing conditions. The method generally includes using a mass flow controller as a reference for calibrating a flow ratio controller. A span correction factor may be determined to account for the difference between the actual flow and the measured flow through the flow ratio controller. The span correction factors may be used to determine corrected set points for each channel of the flow controller using equations provided herein. Furthermore, the set points of the flow ratio controller may be made gas-independent using additional equations provided herein.
Abstract:
Embodiments of the present invention generally relate to methods of controlling gas flow in etching chambers. The methods generally include splitting a single process gas supply source into multiple inputs of separate process chambers, such that each chamber processes substrates under uniform processing conditions. The method generally includes using a mass flow controller as a reference for calibrating a flow ratio controller. A span correction factor may be determined to account for the difference between the actual flow and the measured flow through the flow ratio controller. The span correction factors may be used to determine corrected set points for each channel of the flow controller using equations provided herein. Furthermore, the set points of the flow ratio controller may be made gas-independent using additional equations provided herein.
Abstract:
Overlapping lenses for use in a light fixture provided to project a beam of light in a first beam shape having a first cross-sectional geometry. A first lens device is supported in the fixture and movable into a position to interrupt the beam of light for selecting beam shape by altering the first projected beam shape from the first cross-sectional geometry to a second cross-sectional geometry different from the first geometry. The first lens device includes at least one lenticular lens element having lens lenticules oriented in a first direction. A second lens device, separate from the first device, is supported in the fixture and movable into a position to interrupt the beam of light for selecting beam shape by altering the second projected beam shape from the second cross-sectional geometry to a third cross-sectional geometry different from the first and second geometries. The second lens device includes another lenticular lens element overlapping the one lenticular lens element of the first lens device and has lenticules oriented in a second direction, different from the first direction. The lens elements may be carried by discs rotatably mounted in the fixture. Each disc may carry a plurality of lens elements which can be combined by overlapping to change beam angle and beam shape.
Abstract:
In an automated process for deaerating and purifying both the water which is recirculated in a coolant loop through a stack of fuel cells and the make-up water for the coolant loop, a portion of the water from the coolant loop is blown down into a deaerator water reservoir to which make-up water is added by condensing water from the fuel cell stack reactant gas streams into a deaeration column disposed above the reservoir. The blowdown provides some of the heat for deaeration; and the amount of blowdown is controlled as a function of the amount of make-up water added to the coolant loop by sensing the location of a steam/liquid interface within the deaeration column. Water is withdrawn from the reservoir, purified, and then introduced into the coolant loop at a rate sufficient to maintain the desired amount of water circulating in the coolant loop.
Abstract:
Embodiments of the present invention generally relate to methods of controlling gas flow in etching chambers. The methods generally include splitting a single process gas supply source into multiple inputs of separate process chambers, such that each chamber processes substrates under uniform processing conditions. The method generally includes using a mass flow controller as a reference for calibrating a flow ratio controller. A span correction factor may be determined to account for the difference between the actual flow and the measured flow through the flow ratio controller. The span correction factors may be used to determine corrected set points for each channel of the flow controller using equations provided herein. Furthermore, the set points of the flow ratio controller may be made gas-independent using additional equations provided herein.
Abstract:
Methods and apparatus for delivery of gas are provided herein. In some embodiments, a gas delivery system may include a premix tank having an inlet and an outlet; a plurality of gas supplies coupled to the inlet of the premix tank; a plurality of valves, each valve respectively disposed in line with a corresponding one of the plurality of gas supplies; and a conduit coupling the outlet of the premix tank to one or more gas delivery zones.
Abstract:
Methods and apparatus for twin chamber processing systems are disclosed, and, in some embodiments, may include a first process chamber and a second process chamber having independent processing volumes and a plurality of shared resources between the first and second process chambers. In some embodiments, the shared resources include at least one of a shared vacuum pump, a shared gas panel, or a shared heat transfer source.
Abstract:
Methods and apparatus for calibrating a plurality of gas flows in a substrate processing system are provided herein. In some embodiments, a substrate processing system may include a cluster tool comprising a first process chamber and a second process chamber coupled to a central vacuum transfer chamber; a first flow controller to provide a process gas to the first process chamber; a second flow controller to provide the process gas to the second process chamber; a mass flow verifier to verify a flow rate from each of the first and second flow controllers; a first conduit to selectively couple the first flow controller to the mass flow verifier; and a second conduit to selectively couple the second flow controller to the mass flow verifier.