Abstract:
A computer program is provided for developing a bend model of a part to be produced at an intelligent production facility. In accordance with an aspect of the disclosed program, faces of the part are detected based on initial part information, and bendlines of the part are identified based on the detected faces of the part. Further, additional part information is generated by performing a predetermined operation (e.g., a folding operation or an unfolding operation) on the detected faces of the part. The disclosed program also includes other capabilities, such as the capability to perform clean-up operations on initial, 2-D part information and to selectively eliminate part thickness representations in order to facilitate the preparation of a 3-D representation of the part from the modified 2-D part information.
Abstract:
An apparatus and method are disclosed for transferring part data, such as sheet metal part data, between computer-based application or CAD environments and for editing such part data. The application environments may include a 2-D CAD program environment and an object oriented bend model program environment. An interface is provided through which a 2-D CAD system may access data from the object oriented bend model system and by which data may be transferred between the systems to permit editing and updating of the part model within and from both applications. The interface may be implemented through a library or set of application program interface (API) functions and a message-based protocol (such as dynamic data exchange (DDE)) to facilitate the exchange of sheet metal part data. Various editing capabilities or tools may also be provided to enable, for example, the attachment of faces of the part or the shifting of one face relative to another face of the part.
Abstract:
An apparatus and method is provided for managing and distributing design and manufacturing information throughout a factory in order to facilitate the production of components, such as bent sheet metal components. In accordance with an aspect of the present invention, the management and distribution of critical design and manufacturing information is achieved by storing and distributing the design and manufacturing information associated with each job. By replacing the traditional paper job set-up or work sheet with, an electronically stored job sheet that can be accessed instantaneously from any location in the factory, the present invention improves the overall efficiency of the factory. In addition, through the various aspects and features of the invention, the organization and accessibility of part information and stored expert knowledge is improved.
Abstract:
An apparatus and method is provided for managing and distributing design and manufacturing information throughout a factory in order to facilitate the production of components, such as bent sheet metal components. In accordance with an aspect of the present invention, the management and distribution of critical design and manufacturing information is achieved by storing and distributing the design and manufacturing information associated with each job. By replacing the traditional paper job set-up or work sheet with, for example, an electronically stored job sheet that can be accessed instantaneously from any location in the factory, the present invention improves the overall efficiency of the factory. In addition, through the various aspects and features of the invention, the organization and accessibility of part information and stored expert knowledge is improved.
Abstract:
A system and method are provided for developing a bend model of a part to be produced at an intelligent production facility. In accordance with an aspect of the disclosed system and method, faces of the part are detected based on initial part information, and bendlines of the part are identified based on the detected faces of the part. Further, additional part information is generated by performing a predetermined operation (e.g., a folding operation or an unfolding operation) on the detected faces of the part. The disclosed system and method also include other capabilities, such as the capability to perform clean-up operations on initial, 2-D part information and to selectively eliminate part thickness representations in order to facilitate the preparation of a 3-D representation of the part from the modified 2-D part information.
Abstract:
The invention relates to a human phospholipase C expressed in the brain (B-PLC) and induced in response to ischemic brain tissue. The inventions provides methods and reagents useful for diagnosis and treatment of hypoxic-ischemic brain insult such as stroke.
Abstract:
The present invention relates to the identification of a binding between NMDA receptor (NMDA-R) subunits and a protein tyrosine phosphatase (PTP), e.g., PTPL1. The present invention provides methods for screening a PTPL1 agonist or antagonist that modulates NMDA-R signaling. The present invention also provide methods and compositions for treatment of disorders mediated by abnormal NMDA-R signaling. The present invention further provides methods for isolating PTPL1 from a biological preparation.
Abstract:
An apparatus and method is provided for managing and distributing design and manufacturing information throughout a factory in order to facilitate the production of components, such as bent sheet metal components. In accordance with an aspect of the present invention, the management and distribution of critical design and manufacturing information is achieved by storing and distributing the design and manufacturing information associated with each job. By replacing the traditional paper job set-up or work sheet with, for example, an electronically stored job sheet that can be accessed instantaneously from any location in the factory, the present invention improves the overall efficiency of the factory. In addition, through the various aspects and features of the invention, the organization and accessibility of part information and stored expert knowledge is improved.
Abstract:
An apparatus is provided for resolving a collision between a first face and a second face of a sheet metal part represented by a 3-D model. The faces collide with one another when a 2-D model of a flat sheet metal part, designed on a CAD system, is folded into the 3-D model displayed on the CAD system. The apparatus comprises a detecting means, an analyzing means and an eliminating means. The detecting means is for detecting each collision between the faces which become adjacent in association with folding the 2-D model into the 3-D model. The eliminating means is for eliminating the collision by designing a 2-D model of a modified flat sheet metal part which can be folded without causing the collision.