Abstract:
A current sensor arrangement comprises plural sensor elements arranged around a centre point, each of the sensor elements having a plane of zero sensitivity to uniform magnetic fields. A first one (202) of the sensor elements has a first angular separation (X1) relative to the centre point from a second, adjacent sensor element (204) and a second angular separation (X2) relative to the centre point from a third, adjacent sensor element (206). The first angular separation is less than the second angular separation. An intercept (I13) of the planes of the first and third sensor elements is located outside a triangle formed by the centre point and the first and third sensor elements and an intercept (I12) of the planes of the first and second sensor elements is located inside a triangle formed by the centre point and the first and second sensor elements.
Abstract:
A solenoid actuator is described. The solenoid actuator comprises an armature, pole piece(s), electromagnet coil(s) arranged, in response to energisation, to cause travel of the armature between first and second positions along a direction of travel, permanent magnet(s) positioned and orientated for latching the armature in at least the first position when the armature is in the first position and spring(s) arranged to bias the armature. The solenoid actuator can be operated to provide partial lift.
Abstract:
A sensor for use in detecting a time-varying current in a conductor (106) comprises plural sets of two oppositely-configured sensor elements (104-1 . . . 104-6) arranged around a sensing volume having a central axis, the sensor elements (104-1A, 104-1B) of each set being provided substantially in a common plane that does not intersect the central axis, and each set having a different common plane, the sensor elements of each set being arranged such that a normal (N) of their common plane at a point between central parts of sensor elements lies on a plane (P) that is radial to the central axis of the sensing volume.
Abstract:
A current sensor arrangement comprises plural sensor elements arranged around a center point, each of the sensor elements having a plane of zero sensitivity to uniform magnetic fields. A first one (202) of the sensor elements has a first angular separation (X1) relative to the center point from a second, adjacent sensor element (204) and a second angular separation (X2) relative to the center point from a third, adjacent sensor element (206). The first angular separation is less than the second angular separation. An intercept (I13) of the planes of the first and third sensor elements is located outside a triangle formed by the center point and the first and third sensor elements and an intercept (I12) of the planes of the first and second sensor elements is located inside a triangle formed by the center point and the first and second sensor elements.
Abstract:
A system for processing a signal from a sensor is described. The system comprises an analog-to-digital converter. The system is configured to vary a sampling rate of said analog-to-digital converter dependent on an expected shape of the signal.
Abstract:
A sensor for use in detecting a time-varying current in a conductor (106) comprises plural sets of two oppositely-configured sensor elements (104-1 . . . 104-6) arranged around a sensing volume having a central axis, the sensor elements (104-1A, 104-1B) of each set being provided substantially in a common plane that does not intersect the central axis, and each set having a different common plane, the sensor elements of each set being arranged such that a normal (N) of their common plane at a point between central parts of sensor elements lies on a plane (P) that is radial to the central axis of the sensing volume.
Abstract:
According to an embodiment of the invention, there is disclosed a method of operating a wireless mesh network. The method comprises: seeding the network from a first node; allocating a network address to each member node of the network to form a tree-like structure of the nodes, such that the network address is reversibly derived from the network address of the member node from which it is derived in the tree-like structure; and mapping out cross-branch network connections between nodes that are determined not to be immediate neighbour nodes according to the addresses of the tree-like structure. Further related system embodiments are also disclosed.
Abstract:
A method for detecting an imperfection in a blister package having at least one radiation-transmissible layer, optionally moving, the blister package having a flat side and a pocket side, the method comprising the steps of directing radiation at the flat side and/or the pocket side of the blister package and detecting any radiation emitted from at least one edge of the blister package.
Abstract:
According to an embodiment of the invention, there is disclosed a method of operating a wireless mesh network. The method comprises: seeding the network from a first node; allocating a network address to each member node of the network to form a tree-like structure of the nodes, such that the network address is reversibly derived from the network address of the member node from which it is derived in the tree-like structure; and mapping out cross-branch network connections between nodes that are determined not to be immediate neighbour nodes according to the addresses of the tree-like structure. Further related system embodiments are also disclosed.
Abstract:
A three-phase electronic electricity meter that includes configurable voltage sensing blades such that the electricity meter can be configured for use with various electrical service types. The electricity meter includes a base having a configuration to correspond to standard ANSI-type sockets. The meter base includes a plurality of individual voltage sensing blades that are received by the ANSI socket. At least one of the voltage sensing blades is movable between a first and a second position such that the voltage sensing blade contacts different areas on a meter circuit board in the first and second positions. A common circuit board can be utilized for different electrical service types and the contact arrangement can be selectively configured by moving the voltage sensing blades between their first and second positions.