Abstract:
A rotary electric machine includes a rotor core, a stator, a field yoke, and a field winding. The rotor core is fixed to a rotary shaft, which includes a magnetic body for forming a magnetic path, and magnetic salient poles. The stator has teeth and a stator winding wound around the teeth by concentrated winding. A slot is formed between adjacent ones of the teeth in a circumferential direction. The field yoke magnetically connects the stator and the magnetic body. The field winding is located in proximity to at least one of the winding ends of the stator winding in an axial direction of the rotary shaft. The field winding generates a magnetic pole on the magnetic salient poles when energized.
Abstract:
There is provided a control apparatus that controls a motor of an electric power steering system to assist a steering effort of an operator. The control apparatus includes a sensor, a parameter computer, a difference computer, a target torque computer, and a motor driver. The parameter computer computes a current value of one of physical parameters of one of constituents of the electric power steering system based on a steering parameter determined by the sensor referring to an equation of motion. The difference computer computes a difference between the current value of the one of the physical parameters computed by the parameter computer and a predetermined value of the one of the physical parameters. The target torque computer computes a target torque of the motor which compensates for the difference between the current value and the predetermined value of the one of the physical parameters.
Abstract:
A rotating electric motor includes a stator core, a rotational shaft capable of rotation, a field yoke allowing a flow of magnetic flux in an axial direction, first and second rotor cores fixedly installed on the rotational shaft, a first magnet fixedly installed between the first rotor core and the second rotor core, a first rotor teeth formed at the first rotor core, a second magnet provided alongside of the first rotor teeth in the circumferential direction of the first rotor core, a second rotor teeth formed at the outer surface of the second rotor core, protruding outwardly in the radial direction, a third magnet provided alongside of the second rotor core in the axial direction, and windings that can control the density of magnetic flux between at least one of the first rotor core and second rotor core and the stator core.
Abstract:
A rotary electric machine capable of effectively utilizing both end faces of a rotor in the rotating axis direction by suppressing magnetic saturation comprises a stator having axial parts (31) and (32) and a radial part. The axial part (31) comprises cores (311) to (314) and coils (321) to (324), and the axial part (32) comprises cores (312) to (315) and coils (322) to (325). The radial part comprises cores (332) to (337) and coils (352) to (357). The width of each of the cores (311) to (315) in the circumferential direction is twice the width of each of the cores (332) to (337) in the circumferential direction. The number of windings of each of the coils (321) to (325) is equal to the number of windings of each of the coils (352) to (357).
Abstract:
An operating apparatus including a main body, a movable member, a drive unit having a drive source, and a control unit controlling the drive source to control the position of the movable member relative to the main body. The control unit including a position control system and an acceleration control system. The position control system including a position command portion, a first feedforward compensator outputting a first operation command to the drive source, a second feedforward compensator, a positional-information acquiring device obtaining information related to the position of the movable member, and a first feedback compensator outputting a second operation command to the drive source. The acceleration control system including an acceleration-information acquiring device obtaining information related to an acceleration of the main body, a third feedforward compensator, a second feedback compensator outputting a third operation command to the drive source.
Abstract:
This invention provides various technologies to maximize an air cleaning effect, utilizing photocatalyst materials such as titanium di-oxide.It is possible for the photo catalyst material of the present invention to have an effect of air cleaning not only in day time but also at night, making use of titanium di-oxide as main photocatalyst and platinum as auxiliary catalyst. The former is a photocatalyst material and the latter works to have an effect of having organic compounds adsorbed and decomposed.
Abstract:
There is provided a control apparatus that controls a motor of an electric power steering system to assist a steering effort of an operator. The control apparatus includes a sensor, a parameter computer, a difference computer, a target torque computer, and a motor driver. The parameter computer computes a current value of one of physical parameters of one of constituents of the electric power steering system based on a steering parameter determined by the sensor referring to an equation of motion. The difference computer computes a difference between the current value of the one of the physical parameters computed by the parameter computer and a predetermined value of the one of the physical parameters. The target torque computer computes a target torque of the motor which compensates for the difference between the current value and the predetermined value of the one of the physical parameters.