Abstract:
The integrated device for amplification and other biological tests comprises a semiconductor material body having a surface; a plurality of buried channels extending in the semiconductor material body at a distance from the surface of the semiconductor material body; inlet and outlet ports extending from the surface of the semiconductor material body as far as the ends of the buried channels and being in fluid connection with the buried channels; and heating elements on the semiconductor material body. Temperature sensors are arranged between the heating elements above the surface of the semiconductor material body.
Abstract:
The system can be used for the automatic analysis of images (I), comprising a matrix of spots, such as images of DNA microarrays after hybridisation. The system can be associatednulland preferably integrated in a single monolithic component implementing VLSI CMOS technologynullto a sensor (10) for acquiring said images (I). The system comprises a circuit (20) for processing the signals corresponding to the images (I), configured according to a cellular neural network (CNN) architecture for the parallel analogue processing of signals.
Abstract:
A device may detect the zero-cross event of a BEMF of an electric motor with first, second, and third phase windings driven by respective first, second, and third power driving stages. The device may include a control circuit configured to place at an impedance state the third power driving stage relative to the third phase winding, the third phase winding being coupled to a zero-cross detecting circuit, introduce a masking signal to mask an output signal of the zero-cross detecting circuit in correspondence with each rising edge of a first driving signal of the first power driving stage relative to the first phase winding, and determine whether a first duty-cycle of the first driving signal is such that a duration of a masking window of the masking signal is greater than an on-time period of the first driving signal.
Abstract:
A method of erasing a flash memory integrated in a chip of semiconductor material and including at least one matrix of cells with a plurality of rows and a plurality of columns made in at least one insulated body, the cells of each row being connected to a corresponding word line; the method includes the step of applying a single erasing pulse relative to a selected single one of the at least one body to a selected subset of the word lines for erasing the cells of each corresponding row made in the selected body with no intermediate check of the completion of the erasure.
Abstract:
Semiconductor power device including a semiconductor layer of a first type of conductivity, wherein a body region of a second type of conductivity including source regions of the first type of conductivity is formed, a gate oxide layer superimposed to the semiconductor layer with an opening over the body region, polysilicon regions superimposed to the gate oxide layer, and regions of a first insulating material superimposed to the polysilicon regions. The device includes regions of a second insulating material situated on a side of both the polysilicon regions and the regions of a first insulating material and over zones of the gate oxide layer situated near the opening on the body region, oxide regions interposed between the polysilicon regions and the regions of a second insulating material, oxide spacers superimposed to the regions of a second insulating material.