Abstract:
A plasma display panel, including a front substrate and a rear substrate arranged opposite to each other, a plurality of display electrodes disposed in a first direction on a first surface of the front substrate, a dielectric layer covering the display electrodes on the front substrate, a protective layer including protective layer grains covering the dielectric layer, and a crystal modification seed layer disposed between the dielectric layer and the protective layer, wherein the crystal modification seed layer includes crystal modification seeds including at least one of an alkaline earth metal, a transition metal, an amphoteric element, a semimetal element, and a lanthanide.
Abstract:
A direct current plasma display panel (DC-PDP) includes a first substrate and a second substrate facing each other, discharge cells between the first substrate and the second substrate, first and second electrodes disposed in each of the discharge cells, first conductive silicon layers contacting the first electrodes, first oxidized porous silicon layers contacting the first conductive silicon layers, second conductive silicon layers contacting the second electrodes, second oxidized porous silicon layers contacting the second conductive silicon layers, phosphor layers arranged in the discharge cells, and a discharge gas disposed in the discharge cells.
Abstract:
A plasma display panel including a front substrate and a rear substrate facing each other, a plurality of barrier ribs formed between the front substrate and the rear substrate, a discharge generation unit that causes a plasma discharge in a discharge space, and a fluorescent layer that generates visible light due to the discharge. The rear substrate includes at least two rear substrate parts connected to each other.
Abstract:
A plasma display panel includes: a front and a rear substrate which face each other and form a discharge space; address electrodes arranged on an upper surface of the rear substrate; a first dielectric layer formed on the upper surface of the rear substrate and covering the address electrodes; partition walls formed on the upper surface of the rear substrate and partitioning the discharge space to form discharge cells; a fluorescent layer formed on an upper surface of the first dielectric layer and on sidewalls of partition walls, and forming inner surfaces of the discharge cells; first and second sustain electrodes formed on a lower surface of the front substrate in each of the discharge cells in a direction perpendicular to the address electrodes; and a second dielectric layer formed on the lower surface of the front substrate to cover the sustain electrodes, and having protruding portions formed between the sustain electrodes and protruding into discharge cells.
Abstract:
A flat lamp is provided, including an upper plate and a lower plate arranged to face each other at a predetermined distance; a plurality of spacers installed between the upper plate and the lower plate to form discharge spaces; a first and second electrodes provided in a stripe form on the outer surface of the upper plate or the lower plate with the respective discharge spaces located thereon; a first and second inner electrodes provided within each of the spacers; and a fluorescent layer formed on each of inner surfaces of the upper and lower plates and each of the outer surfaces of the spacers.
Abstract:
A plasma display apparatus having an improved structure so as to increase luminescence efficiency and uniformity and a method of manufacturing the display apparatus are provided. The display apparatus includes: a front substrate and a rear substrate facing each other; a plurality of first and second sustain electrodes formed on the front substrate and spaced apart from each other; and first and second electron emitting layers formed on the first and second sustain electrodes, respectively, emitting electrons received from the first and second sustain electrodes, and having a structure in which their thickness decreases as they approach a gap between the first and second sustain electrodes.
Abstract:
A design for a plasma display panel (PDP). The novel PDP has two separate layers of fluorescent material. One layer of fluorescent material can generate long wavelength from VUV rays and the other fluorescent layer can convert either of VUV or long wavelength ultraviolet rays into visible rays. Such a PDP improves the luminance efficiency by more efficiently using the UV and VUV rays generated during plasma discharge.
Abstract:
A plasma display panel (PDP) includes a front substrate, a rear substrate facing the front substrate, a plurality of discharge cells between the front and rear substrates, and a plurality of sustain electrode pairs including an X electrode and a Y electrode formed in a predetermined pattern between the front and rear substrates, each discharge cell including at least two sustain discharge element pairs between which sustain discharge may occur.
Abstract:
In an Alternating Current (AC) plasma display panel, a rear substrate and a front substrate are arranged to face each other. Discharge cells are formed between the rear and front substrates. A plurality of strip-shaped address electrodes are arranged on the rear substrate. A first dielectric layer is arranged on the rear substrate, and the address electrodes are buried in the first dielectric layer. A plurality of strip-shaped sustaining electrodes are arranged in pairs on the rear substrate to cross the address electrodes at right angles. A second dielectric layer is arranged on the rear substrate, and the sustaining electrodes are buried in the second dielectric layer. A protective layer is arranged on a bottom surface of the second dielectric layer. A plurality of barrier ribs are arranged between the front and rear substrates and define the discharge cells. The lateral sides of each of the barrier ribs are coated with a fluorescent layer. Each of the address electrodes includes thick portions disposed below the discharge cells and thin portions disposed between adjacent thick portions. The thick portions are thicker than the thin portions.
Abstract:
A plasma display panel includes a first substrate and a second substrate facing each other and a plurality of barrier ribs partitioning a space therebetween to form a plurality of discharge cells. Address electrodes are arranged on the first substrate, and a plurality of first sustain electrodes and a plurality of second sustain electrodes are arranged between the second substrate and the barrier ribs to cause a surface discharge inside the discharge cells. The first sustain electrodes and the second sustain electrodes are arranged at locations corresponding to locations of the barrier ribs.