Abstract:
Methods and systems for adaptively controlling process parameters in semiconductor manufacturing equipment. An embodiment provides for gain scheduling of PID controllers across recipe steps. One embodiment provides a method for controlling a chuck temperature during a semiconductor manufacturing process, the method employing a first set of proportional-integral-derivative (PID) values in a PID controller to control the chuck temperature at a first setpoint in a first step of a process recipe and employing a second set of PID values in the PID controller to control the chuck temperature at a second setpoint, different than the first setpoint, in a second step of the process recipe. The methods and systems provide reduced controller response times where process parameter setpoint between steps of a process recipe span a wide range.
Abstract:
Embodiments of the invention relate to a substrate etching system and process. In one embodiment, a method may include depositing material on the substrate during a deposition process, etching a first layer of the substrate during a first etch process, and etching a second layer of the substrate during a second etch process, wherein a first bias power is applied to the substrate during the first process, and wherein a second bias power is applied to the substrate during the second etch process. In another embodiment, a system may include a gas delivery system containing a first gas panel for supplying a first gas to a chamber, a second gas panel for supplying a second gas to the chamber, and a plurality of flow controllers for directing the gases to the chamber to facilitate rapid gas transitioning between the gases to and from the chamber and the panels.
Abstract:
Methods and systems for adaptively controlling process parameters in semiconductor manufacturing equipment. An embodiment provides for gain scheduling of PID controllers across recipe steps. One embodiment provides a method for controlling a chuck temperature during a semiconductor manufacturing process, the method employing a first set of proportional-integral-derivative (PID) values in a PID controller to control the chuck temperature at a first setpoint in a first step of a process recipe and employing a second set of PID values in the PID controller to control the chuck temperature at a second setpoint, different than the first setpoint, in a second step of the process recipe. The methods and systems provide reduced controller response times where process parameter setpoint between steps of a process recipe span a wide range.